根据已知条件建立坐标系,得出此抛物线的顶点坐标以及图象与x轴的交点坐标,求出二次函数解析式,再根据M点的横坐标,求出纵坐标,即可解决问题.
【解析】
如图,建立平面直角坐标系.
∵AB=20cm,抛物线的顶点到AB边的距离为25cm,
∴此抛物线的顶点坐标为:(10,25),图象与x轴的交点坐标为:(0,0),(20,0),
∴抛物线的解析式为:y=a(x-10)2+25,
解得:0=100a+25,
a=-,
∴y=-(x-10)2+25,
现要沿AB边向上依次截取宽度均为4cm的矩形铁皮,
∴截得的铁皮中有一块是正方形时,正方形边长一定是4cm.
∴当四边形DEFM是正方形时,DE=EF=MF=DM=4cm,
∴M点的横坐标为AN-MK=10-2=8,
即x=8,代入y=-(x-10)2+25,
解得:y=24,
∴KN=24,24÷4=6,
∴这块正方形铁皮是第六块,
故选:B.