满分5 > 初中数学试题 >

(2012•泰兴市一模)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB...

(2012•泰兴市一模)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连接DP,作PQ⊥DP,使得PQ交射线BC于点E,设AP=x.
(1)当x为何值时,△APD是等腰三角形;
(2)若设BE=y,求y关于x的函数关系式;
(3)若BC的长可以变化,是否存在点P,使得PQ经过点C?若不存在,请说明理由,若存在并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C.
manfen5.com 满分网
1、过D点作DH⊥AB于H,则四边形DHBC为矩形,在Rt△AHD中,由勾股定理可求得DH、AD、PH的值,若△ADP为等腰三角形,则分三种情况:①当AP=AD时,x=AP=AD,②当AD=PD时,有AH=PH,故x=AH+PH,③当AP=PD时,则在Rt△DPH中,由勾股定理可求得DP的值,有x=AP=DP. 2、易证:△DPH∽△PEB⇒,即,故可求得y与x的关系式. 3、利用△DPH∽△PEB,得出=,进而利用根的判别式和一元二次不等式解集得出即可. 【解析】 (1)过D点作DH⊥AB于H,则四边形DHBC为矩形, ∴DH=BC=4,HB=CD=6. ∴AH=2,AD=2. ∵AP=x, ∴PH=x-2, 情况①:当AP=AD时,即x=2. 情况②:当AD=PD时,则AH=PH. ∴2=x-2,解得x=4. 情况③:当AP=PD时, 则Rt△DPH中,x2=42+(x-2)2,解得x=5. ∵2<x<8, ∴当x为2、4、5时,△APD是等腰三角形. (2)∵∠DPE=∠DHP=90°, ∴∠DPH+∠EPB=∠DPH+∠HDP=90°. ∴∠HDP=∠EPB. 又∵∠DHP=∠B=90°, ∴△DPH∽△PEB. ∴, ∴. 整理得:y=(x-2)(8-x)=-x2+x-4. (3)存在. 设BC=a,则由(2)得△DPH∽△PEB, ∴=, ∴y=, 当y=a时, (8-x)(x-2)=a2 x2-10x+(16+a2)=0, ∴△=100-4(16+a2), ∵△≥0, ∴100-64-4a2≥0, 4a2≤36, 又∵a>0, ∴a≤3, ∴0<a≤3, ∴满足0<BC≤3时,存在点P,使得PQ经过C.
复制答案
考点分析:
相关试题推荐
(2008•长春)汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,如图,三个汉字可以看成是轴对称图形.
manfen5.com 满分网manfen5.com 满分网
(1)请在方框中再写出2个类似轴对称图形的汉字;
(2)小敏和小慧利用“土”、“口”、“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)小敏获胜,否则小慧获胜,你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析,并写出构成的汉字进行说明.
查看答案
(2008•聊城)已知一次函数与反比例函数的图象交于点P(-3,m),Q(2,-3).
(1)求这两个函数的函数关系式;
(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;
(3)当x为何值时,一次函数的值大于反比例函数的值?当x为何值时,一次函数的值小于反比例函数的值?

manfen5.com 满分网 查看答案
(2011•宜兴市二模)“无论多么大的困难除以13亿,都将是一个很小的困难”.在汶川特大地震发生后,某市光明中学全体学生积极参加了“同心协力,抗震救灾”活动,九年级甲班两位同学对本班捐款情况作了统计:全班50人共捐款900元,两位同学分别绘制了两幅不完整的统计图(注:每组含最小值,不含最大值).
manfen5.com 满分网
请你根据图中的信息,解答下列问题:
(1)从图1中可以看出款捐金额在15-20元的人数有多少人?
(2)补全条形统计图,并计算扇形统计图a,b的值;
(3)全校共有1268人,请你估计全校学生捐款的总金额大约是多少元?
查看答案
(2008•襄阳)化简求值:manfen5.com 满分网,其中x=manfen5.com 满分网+1.
查看答案
(2008•泰州)在矩形ABCD中,AB=2,AD=manfen5.com 满分网
(1)在边CD上找一点E,使EB平分∠AEC,并加以说明;
(2)若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.
①求证:点B平分线段AF;
②△PAE能否由△PFB绕P点按顺时针方向旋转而得到?若能,加以证明,并求出旋转度数;若不能,请说明理由.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.