由已知可以得到A1,A2,A3,…点的坐标分别为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),…,由此可推出点An,Bn,An+1,Bn+1的坐标为,(n,0),(n,),(n+1,0),(n+1,).由函数图象和已知可知要求的Pn的坐标是
直线AnBn+1和直线An+1Bn的交点.在这里可以根据推出的四点求出两直线的方程,从而求出点Pn.
【解析】
由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,
又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),…,.
由此可推出An,Bn,An+1,Bn+1四点的坐标为,(n,0),(n,),(n+1,).
所以得直线AnBn+1和An+1Bn的直线方程分别为:
y-0=(x-n)+0,
y-0=(x-n-1)+0,
即,
解得:
,
故答案为:(n+,).