满分5 > 初中数学试题 >

(2007•昆明)如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线...

(2007•昆明)如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
(注意:本题中的结果均保留根号).

manfen5.com 满分网
(1)由已知得OA=2,将线段OA绕原点O顺时针旋转120°,则OB与x轴的正方向夹角为60°,过点B作BD⊥x轴于点D,解直角三角形可得OD、BD的长,可表示B点的坐标; (2)直接将A、O、B三点坐标代入抛物线解析式的一般式,可求解析式; (3)因为点A,O关于对称轴对称,连接AB交对称轴于C点,C点即为所求,求直线AB的解析式,再根据C点的横坐标值,求纵坐标; (4)设P(x,y)(-2<x<0,y<0),用割补法可表示△PAB的面积,根据面积表达式再求取最大值时,x的值. 【解析】 (1)过点B作BD⊥x轴于点D,由已知可得:OB=OA=2,∠BOD=60°, 在Rt△OBD中,∠ODB=90°,∠OBD=30° ∴OD=1,DB= ∴点B的坐标是(1,).(2分) (2)设所求抛物线的解析式为y=ax2+bx+c(a≠0), 由已知可得:, 解得:a=,b=,c=0, ∴所求抛物线解析式为y=x2+x.(4分) (3)存在, 由y=x2+x配方后得:y=(x+1)2- ∴抛物线的对称轴为x=-1(6分) (也可用顶点坐标公式求出) ∵点C在对称轴x=-1上,△BOC的周长=OB+BC+CO; ∵OB=2,要使△BOC的周长最小,必须BC+CO最小, ∵点O与点A关于直线x=-1对称,有CO=CA △BOC的周长=OB+BC+CO=OB+BC+CA ∴当A、C、B三点共线,即点C为直线AB与抛物线对称轴的交点时,BC+CA最小,此时△BOC的周长最小. 设直线AB的解析式为y=kx+b,则有:, 解得:k=,b=, ∴直线AB的解析式为y=x+,(7分) 当x=-1时,y=, ∴所求点C的坐标为(-1,),(8分) (4)设P(x,y)(-2<x<0,y<0), 则y=x2+x① 过点P作PQ⊥y轴于点Q,PG⊥x轴于点G,过点A作AF⊥PQ轴于点F,过点B作BE⊥PQ轴于点E, 则PQ=-x,PG=-y, 由题意可得:S△PAB=S梯形AFEB-S△AFP-S△BEP(9分) =(AF+BE)•FE-AF•FP-PE•BE =(-y+-y)(1+2)-(-y)(x+2)-(1-x)(-y) =② 将①代入②, 化简得:S△PAB=-x2-x+(10分) =(x+)2+ ∴当时,△PAB得面积有最大值,最大面积为.(11分) 此时 ∴点P的坐标为.(12分)
复制答案
考点分析:
相关试题推荐
(2011•淮北一模)阅读理解题:
定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
例如计算:(5+i)×(3-4i)=19-17i.
(1)填空:i3=______,i4=______
(2)计算:(3+i)2
(3)试一试:请利用以前学习的有关知识将manfen5.com 满分网化简成a+bi的形式.
查看答案
(2010•宿迁)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.
(1)求甲、乙两种花木每株成本分别为多少元?
(2)据市场调研,1株甲种花木售价为760元,1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21 600元,花农有哪几种具体的培育方案?
查看答案
(2009•湖州)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)若∠A=90°,求证:四边形DFAE是正方形.

manfen5.com 满分网 查看答案
(2011•淮北模拟)如图,CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦AB⊥OD,点E为垂足,已知⊙O的半径为10,sin∠COD=manfen5.com 满分网.求:
(1)弦AB的长; 
(2)CD的长.

manfen5.com 满分网 查看答案
(2010•南通)光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50m/min的速度向正东方向行走,在A处测得建筑物C在北偏东60°方向上,20min后他走到B处,测得建筑物C在北偏西45°方向上,求建筑物C到公路AB的距离.(已知manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.