满分5 > 初中数学试题 >

(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC...

(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为( )
①OH=manfen5.com 满分网BF;②∠CHF=45°;③GH=manfen5.com 满分网BC;④DH2=HE•HB.
manfen5.com 满分网
A.1个
B.2个
C.3个
D.4个
根据已知对各个结论进行分析,从而确定正确的个数.①作EJ⊥BD于J,连接EF,由全等三角形的判定定理可得△DJE≌△ECF,再由平行线的性质得出OH是△DBF的中位线即可得出结论; ②根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论; ③根据OH是△BFD的中位线,得出GH=CF,由GH<BC,可得出结论; ④由相似三角形的判定定理得出△DHG∽△BDH,根据相似三角形的对应边成比例即可得出结论. 【解析】 作EJ⊥BD于J,连接EF ①∵BE平分∠DBC ∴EC=EJ, ∴△DJE≌△ECF ∴DE=FE ∴∠HEF=45°+22.5°=67.5° ∴∠HFE==22.5° ∴∠EHF=180°-67.5°-22.5°=90° ∵DH=HF,OH是△DBF的中位线 ∴OH∥BF ∴OH=BF ②∵四边形ABCD是正方形,BE是∠DBC的平分线, ∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°, ∵CE=CF, ∴Rt△BCE≌Rt△DCF, ∴∠EBC=∠CDF=22.5°, ∴∠BFH=90°-∠CDF=90°-22.5°=67.5°, ∵OH是△DBF的中位线,CD⊥AF, ∴OH是CD的垂直平分线, ∴DH=CH, ∴∠CDF=∠DCH=22.5°, ∴∠HCF=90°-∠DCH=90°-22.5°=67.5°, ∴∠CHF=180°-∠HCF-∠BFH=180°-67.5°-67.5°=45°,故②正确; ③∵OH是△BFD的中位线, ∴DG=CG=BC,GH=CF, ∵CE=CF, ∴GH=CF=CE ∵CE<CG=BC, ∴GH<BC,故此结论不成立; ④∵∠DBE=45°,BE是∠DBF的平分线, ∴∠DBH=22.5°, 由②知∠HBC=∠CDF=22.5°, ∴∠DBH=∠CDF, ∵∠BHD=∠BHD, ∴△DHE∽△BHD, ∴= ∴DH=HE•HB,故④成立; 所以①②④正确. 故选C.
复制答案
考点分析:
相关试题推荐
(2012•天水)如图,正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知抛物线y=ax2+2ax+4(0<a<3),A(x1,y1)B(x2,y2)是抛物线上两点,若x1<x2,且x1+x2=1-a,则( )
A.y1<y2
B.y1=y2
C.y1>y2
D.y1与y2的大小不能确定
查看答案
(2006•常德)若用(1),(2),(3),(4)四幅图象分别表示变量之间的关系,将下面的(a),(b),(c),(d)对应的图象排序:
(a)面积为定值的矩形(矩形的相邻两边长的关系);
(b)运动员推出去的铅球(铅球的高度与时间的关系);
(c)一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系);
(d)某人从A地到B地后,停留一段时间,然后按原速返回(离开A地的距离与时间的关系).
其中正确的顺序是( )
manfen5.com 满分网
A.(3)(4)(1)(2)
B.(3)(2)(1)(4)
C.(4)(3)(1)(2)
D.(3)(4)(2)(1)
查看答案
已知两圆的半径满足方程x2-6x+4=0,圆心距为manfen5.com 满分网,则两圆的位置关系为( )
A.相交
B.外切
C.内切
D.外离
查看答案
在一个不透明的口袋中放着红色、黑色、黄色的橡皮球共有30个,它们除颜色外其它全相同.小刚通过多次摸球试验后发现从中摸到红色球或黄色球的频率稳定在0.15和0.45之间,则口袋中黑色球的个数可能是( )
A.14
B.20
C.9
D.6
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.