满分5 > 初中数学试题 >

(2008•山西)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且...

(2008•山西)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;
(2)判断四边形ABDF是怎样的四边形,并说明理由;
(3)若AB=6,BD=2DC,求四边形ABEF的面积.

manfen5.com 满分网
(1)从图上及已知条件容易看出△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF.判定两个三角形全等时,必须有边的参与,所以此题的关键是找出相等的边. (2)由(1)的结论容易证明AB∥DF,BD∥AF,两组对边分别平行的四边形是平行四边形. (3)EF∥AB,EF≠AB,四边形ABEF是梯形,只要求出此梯形的面积即可. 【解析】 (1)(选证一)△BDE≌△FEC. 证明:∵△ABC是等边三角形, ∴BC=AC,∠ACB=60度. ∵CD=CE, ∴△EDC是等边三角形. ∴DE=EC,∠CDE=∠DEC=60° ∴∠BDE=∠FEC=120度. 又∵EF=AE, ∴BD=FE. ∴△BDE≌△FEC. (选证二)△BCE≌△FDC. 证明:∵△ABC是等边三角形, ∴BC=AC,∠ACB=60度. 又∵CD=CE, ∴△EDC是等边三角形. ∴∠BCE=∠FDC=60°,DE=CE. ∵EF=AE, ∴EF+DE=AE+CE. ∴FD=AC=BC. ∴△BCE≌△FDC. (选证三)△ABE≌△ACF. 证明:∵△ABC是等边三角形, ∴AB=AC,∠ACB=∠BAC=60度. ∵CD=CE,∴△EDC是等边三角形. ∴∠AEF=∠CED=60度. ∵EF=AE,△AEF是等边三角形. ∴AE=AF,∠EAF=60度. ∴△ABE≌△ACF. (2)四边形ABDF是平行四边形. 理由:由(1)知,△ABC、△EDC、△AEF都是等边三角形. ∴∠CDE=∠ABC=∠EFA=60度. ∴AB∥DF,BD∥AF. ∴四边形ABDF是平行四边形. (3)由(2)知,四边形ABDF是平行四边形. ∴EF∥AB,EF≠AB. ∴四边形ABEF是梯形. 过E作EG⊥AB于G,则EG=. ∴S四边形ABEF=EG•(AB+EF)=(6+4)=10.
复制答案
考点分析:
相关试题推荐
(2010•本溪)小华与小丽设计了A,B两种游戏:
游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.
游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.
请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.
查看答案
全国各地正在开展“送货下乡”活动,活动中某单位连续两周的销售情况如下表:
manfen5.com 满分网
(1)活动中A型彩电和M型冰箱每台售价各多少元?
(2)根据规定,A型彩电是按八折,M型冰箱是按七折销售给农民朋友的,请问该单位这两周实际给农民朋友共让利多少元?
查看答案
(2008•盐城)为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36度.根据上面提供的信息,回答下列问题:
(1)写出样本容量,m的值及抽取部分学生体育成绩的中位数;
(2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.
体育成绩(分)人数(人)百分比(%)
26816
2724
2815
29m
30


manfen5.com 满分网 查看答案
(2012•盐城二模)如图,每个小方格都是边长为1个单位的小正方形,B,C,D三点都是格点(每个小方格的顶点叫格点).
(1)找出格点A,连接AB,AD使得四边形ABCD为菱形;
(2)画出菱形ABCD绕点A逆时针旋转90°后的菱形AB1C1D1,并求点C旋转到点C1所经过的路线长.

manfen5.com 满分网 查看答案
(2011•重庆模拟)先化简,manfen5.com 满分网÷(x-1-manfen5.com 满分网),然后自选一个合适的x的值代入求值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.