(2005•玉林)阅读下列材料,并解决后面的问题.
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.过A作AD⊥BC于D(如图),则sinB=

,sinC=

,即AD=csinB,AD=bsinC,于是csinB=bsinC,即

.
同理有

,

.
所以

…(*)
即:在一个三角形中,各边和它所对角的正弦的比相等.
(1)在锐角三角形中,若已知三个元素a、b、∠A,运用上述结论(*)和有关定理就可以
求出其余三个未知元素c、∠B、∠C,请你按照下列步骤填空,完成求解过程:
第一步:由条件a、b、∠A

______

∠B;
第二步:由条件∠A、∠B.

______

∠C;
第三步:由条件.______

______

c.
(2)一货货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以28.4海里/时的速度按北偏东45°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西70°的方向上(如图),求此时货轮距灯塔A的距离AB(结果精确到0.1.参考数据:sin40°=0.643,sin65°=0.90 6,sin70°=0.940,sin75°=0.966).
考点分析:
相关试题推荐
(2005•中山)如图,为测量小河的宽度,先在河岸边任意取一点A,再在河的另一岸取两点B、C,测得∠ABC=45°,∠ACB=30°,量得BC长为20米.
(1)求小河的宽度(使用计算器的地区,结果保留三位有效数字;不使用计算器的地区,结果保留根号);
(2)请再设计一种测量河宽度的方案,画出设计草图并作简要说明.
查看答案
(2005•舟山)课本中有这么一个例题:“如图,河对岸有一水塔AB.在C处测得塔顶A的仰角为30°,向塔前进12米到达D,在D处测得A的仰角为45°,求水塔AB的高”.
解这个题时,我们通常时这样去想的(分析):要求水塔AB的高,只要去寻找AB于已知量之间的关系.在这里,由于难以找到四个量之间的直接关系,我们可引进一个或两个中间量.以此作为媒介,再寻找这些量之间的关系,得到.于是,就可求得水塔的高,问题就解决了.
查看答案
(2008•旅顺口区)在某张航海图上,标明了三个观测点的坐标,如图,O(0,0)、B(6,0)、C(6,8),由三个观测点确定的圆形区域是海洋生物保护区.
(1)求圆形区域的面积(π取3.14);
(2)某时刻海面上出现-渔船A,在观测点O测得A位于北偏东45°,同时在观测点B测得A位于北偏东30°,求观测点B到A船的距离.(

≈1.7,保留三个有效数字);
(3)当渔船A由(2)中位置向正西方向航行时,是否会进入海洋生物保护区?通过计算回答.
查看答案
(2005•北京)如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,又知河宽CD为50米.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求缆绳AC的长(答案可带根号).
查看答案
(2005•毕节地区)如图,在甲建筑物上从A到E悬挂一条条幅,在乙建筑物顶部D点测得条幅顶端A点的仰角为30°,测得条幅底端E点的俯角为45°,若甲、乙两建筑物之间的水平距离为30米,求条幅AE的长.(结果精确到个位,参考数据

=1.732)
查看答案