满分5 > 初中数学试题 >

(2007•开封)已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点...

(2007•开封)已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.
(1)求证:△CPB≌△AEB;
(2)求证:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.

manfen5.com 满分网
(1),(2)根据条件∠ABE=∠CBP,BE=BP,BC=AB,可证△CBP≌△ABE,所以∠PBE=∠ABE+∠ABP=∠CBP+∠ABP=90°,即PB⊥BE. (3)连接PE,则BE=BP,∠PBE=90°,∠BPE=45°,设AP为k,利用题中的比例式和勾股定理可求得PE=2k,AE=3k,所以cos∠PAE==. (1)证明:∵四边形ABCD是正方形, ∴BC=AB,(1分) ∵∠CBP=∠ABE,BP=BE, ∴△CBP≌△ABE. (2)证明:∵∠CBP=∠ABE, ∴∠PBE=∠ABE+∠ABP=∠CBP+∠ABP=90°, ∴PB⊥BE. (1)、(2)两小题可以一起证明. 证明:∵∠CBP=∠ABE, ∴∠PBE=∠ABE+∠ABP(1分) =∠CBP+∠ABP =90°(2分) ∴PB⊥BE.(3分) 以B为旋转中心,把△CBP按顺时针方向旋转90°.(4分) ∵BC=AB,∠CBA=∠PBE=90°,BE=BP.(5分) ∴△CBP与△ABE重合, ∴△CBP≌△ABE.(6分) (3)【解析】 连接PE, ∵BE=BP,∠PBE=90°, ∴∠BPE=45°,(7分) 设AP为k,则BP=BE=2k, ∴PE2=8k2,(8分) ∴PE=2k, ∵∠BPA=135°,∠BPE=45°, ∴∠APE=90°,(9分) ∴AE=3k, 在直角△APE中:cos∠PAE==.(10分)
复制答案
考点分析:
相关试题推荐
(2005•重庆)已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB、CD、AD、BC于点M、N、E、F,设a=PM•PE,b=PN•PF,解答下列问题:
(1)当四边形ABCD是矩形时,见图1,请判断a与b的大小关系,并说明理由;
(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图2,(1)中的结论是否成立?并说明理由;
(3)在(2)的条件下,设manfen5.com 满分网,是否存在这样的实数k,使得manfen5.com 满分网?若存在,请求出满足条件的所有k的值;若不存在,请说明理由.
manfen5.com 满分网
查看答案
(2005•天津)在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
manfen5.com 满分网
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
manfen5.com 满分网
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.
查看答案
(2005•衢州)已知,△ABC中,∠B=90°,∠BAD=∠ACB,AB=2,BD=1,过点D作DM⊥AD交AC于点M,DM的延长线与过点C的垂线交于点P.
(1)求sin∠ACB的值;
(2)求MC的长;
(3)若点Q以每秒1个单位的速度由点C向点P运动,是否存在某一时刻t,使四边形ADQP的面积等于四边形ABCQ的面积;若存在,求出t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2005•镇江)已知:如图,四边形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是BD上一点,PE⊥BC,PF⊥CD,垂足分别为E、F.
(1)求证:PA=EF;
(2)若BD=10,P是BD的中点,sin∠BAP=manfen5.com 满分网,求四边形PECF的面积.

manfen5.com 满分网 查看答案
(2005•遂宁)将一个正方形纸板(如图-)沿虚线剪下,得到七块几何图形的纸板(其中①③⑤⑥⑦是等腰直角三角形,②是正方形)我们把这七块纸板叫做七巧板.现用七巧板拼出一个图形,其空隙部分是一个箭头(如图二).
manfen5.com 满分网
(1)请在图二中用实线画出拼图的痕迹(如实线DP);
(2)如果图一中大正方形纸板的边长为10,计算图二中“箭头”的面积(即封闭平面图形ABCDEFG的面积).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.