满分5 > 初中数学试题 >

(2005•云南)已知:如图,在△ABC中,∠ACB的平分线CD交AB于D,过B...

(2005•云南)已知:如图,在△ABC中,∠ACB的平分线CD交AB于D,过B作BE∥CD交AC的延长线于点E.
(1)求证:BC=CE;
(2)求证:manfen5.com 满分网

manfen5.com 满分网
(1)根据CD平分∠ACB,可知∠ACD=∠BCD;由BE∥CD,可求出△BCE是等腰三角形,故BC=CE; (2)根据平行线的性质,及BC=CE可得出结论. 证明:(1)∵CD平分∠ACB, ∴∠ACD=∠BCD. 又∵BE∥CD, ∴∠CBE=∠BCD,∠CEB=∠ACD. ∵∠ACD=∠BCD, ∴∠CBE=∠CEB. 故△BCE是等腰三角形,BC=CE. (2)∵BE∥CD,根据平行线分线段成比例定理可得=, 又∵BC=CE,∴=.
复制答案
考点分析:
相关试题推荐
(2006•自贡)在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=CD,连接CE.
(1)求证:CE=CA;
(2)在上述条件下,若AF⊥CE于点F,且AF平分∠DAE,CD:AE=3:8,求cos∠ACF的值.

manfen5.com 满分网 查看答案
(2005•毕节地区)如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.
求证:
(1)AD=BD=BC;
(2)点D是线段AC的黄金分割点.

manfen5.com 满分网 查看答案
(2005•扬州)若一个矩形的短边与长边的比值为manfen5.com 满分网(黄金分割数),我们把这样的矩形叫做黄金矩形.
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由;
(3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).

manfen5.com 满分网 查看答案
(2005•常州)如图,在△ABC中,BC=1,AC=2,∠C=90度.
(1)在方格纸①中,画△A′B′C′,使△A′B′C′∽△ABC,且相似比为2:1;
(2)若将(1)中△A′B′C′称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在方格纸②中设计一个以点O为对称中心,并且以直线l为对称轴的图案.
manfen5.com 满分网
查看答案
(2005•嘉兴)某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去.例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形”;相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方….请你协助他们探索这个问题.
(1)写出判定扇形相似的一种方法:若______,则两个扇形相似;
(2)有两个圆心角相等的扇形,其中一个半径为a、弧长为m,另一个半径为2a,则它的弧长为______
(3)如图1是一完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同、面积是它一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.