满分5 > 初中数学试题 >

(2005•上海)在△ABC中,∠ABC=90°,AB=4,BC=3,O是边AC...

(2005•上海)在△ABC中,∠ABC=90°,AB=4,BC=3,O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交射线AB于点P,交射线CB于点F.
(1)如图,求证:△ADE∽△AEP;
(2)设OA=x,AP=y,求y关于x的函数解析式,并写出它的定义域;
(3)当BF=1时,求线段AP的长.

manfen5.com 满分网
(1)证△ADE∽△AEP,需找出两组对应相等的角.连接OD,根据切线的性质,可得出∠ODA=90°,而∠ODE=∠OED,因此∠ADE和∠AEP都是90°加上一个等角,因此∠AEP=∠ADE;再加上两三角形的公共角∠A,即可证得两三角形相似; (2)由△AOD∽△ACB,可得OD=OA,AD=OA;又由△ADE∽△AEP,可得y=x; (3)由△PBF∽△PED和△ADE∽△AEP,得;再将y=,BP=4-AP=4-代入,即可求得AP的长. (1)证明:连接OD, ∵AP切半圆于D,∠ODA=∠PED=90°, 又∵OD=OE, ∴∠ODE=∠OED, ∴∠ADE=∠ODE+∠ODA, ∠AEP=∠OED+∠PED, ∴∠ADE=∠AEP, 又∵∠A=∠A, ∴△ADE∽△AEP; (2)【解析】 ∵△AOD∽△ACB, ∴, ∵AB=4,BC=3,∠ABC=90°, ∴根据勾股定理,得AC==5, ∴OD=OA,AD=OA, ∵△ADE∽△AEP, ∴=, ∵AP=y,OA=x,AE=OE+OA=OD+OA=OA, ∴==, 则y=x(0<x≤); (3)【解析】 情况1:y=x,BP=4-AP=4-, ∵△PBF∽△PED, ∴, 又∵△ADE∽△AEP, ∴, ∴, ∴, 解得:x=, ∴AP=. 情况2:如图,半圆O的半径R较大时,EP交AB延长线于点P,P在B上方;交BC于点F,F在BC之间: CF=BC-BF=3-1=2, 过点E作EG⊥BC, 则△CGE∽△CBA, 则===, 解得,EG=,CG=, FG=FC-CG=2-=, PB:EG=FB:FG, PB=÷=2, AP=AB+PB=4+2=6. 故线段AP的长为2或6.
复制答案
考点分析:
相关试题推荐
(2005•天水)如图,己知⊙Ol与⊙O2外切于点P,A在⊙Ol上,AC切⊙O2于点C,交⊙O1于点B,AP的延长线交⊙O2于点D.
(1)求证:PC平分∠BPD;
(2)求证:PC2=PB•PD;
(3)当⊙O1、⊙O2的半径分别为2cm、3cm时,sin∠BAP的值是多少?当⊙O1、⊙O2的半径分别为4cm、6cm时,sin∠BAP的值是多少?分析sin∠BAP值的变化,你能发现什么规律?请尝试证明或否定你的猜想.

manfen5.com 满分网 查看答案
(2005•天水)如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD.
(1)求证:AB2=AQ•AC;
(2)若过点C的⊙O的切线交DB的延长线于点P,求证:PC=PQ.

manfen5.com 满分网 查看答案
(2005•宜宾)如图1,等腰直角三角形ABC的腰长是2,∠ABC=90度.以AB为直径作半圆O,M是BC上一动点(不运动至B、C两点),过点M引半圆为O的切线,切点是P,过点A作AB的垂线AN,交切线MP于点N,AC与ON、MN分别交于点E、F.
(1)证明:△MON是直角三角形;
(2)当BM=manfen5.com 满分网时,求manfen5.com 满分网的值(结果不取近似值);
(3)当BM=manfen5.com 满分网时(图2),判断△AEO与△CMF是否相似?如果相似,请证明;如果不相似,请说明理由.
manfen5.com 满分网
查看答案
(2005•漳州)已知:如图,直线EF与⊙O相切于点C,AB是⊙O的直径,且BC=3,Ac=4.
(1)求半径OC的长;
(2)在切线EF上找一点M,使得以B、M、C为顶点的三角形与△ACO相似.

manfen5.com 满分网 查看答案
(2005•烟台)(1)如图1,直线MN与⊙O相交,且与⊙O的直径AB垂直,垂足为P,过点P的直线与⊙O交于C、D两点,直线AC交MN于点E,直线AD交MN于点F.求证:PC•PD=PE•PF.
(2)如图2,若直线MN与⊙O相离.(1)中的其余条件不变,那么(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)在图3中,直线MN与⊙O相离,且与⊙O的直径AB垂直,垂足为P.
①请按要求画出图形:画⊙O的割线PCD(PC<PD),直线BC与MN交于E,直线BD与MN交于F.
②能否仍能得到(1)中的结论?请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.