(2005•泰安)某“研究性学习小组”遇到了以下问题,请参与:
已知,△ABC是等边三角形且内接于⊙O,取

上异于A、B的点M.设直线CA与BM相交于点K,直线CB与AM相交于点N.




(1)如图1,图2,图3,M分别为

的中点、三分之一点、四分之一点,△ABC的边长均为2,分别测量出AK、BN的长,计算AK•BN的值(精确到0.01)并将结果填入下表中:
| △ABC的边长 | AK•BN的值 |
图1 | 2 | |
图2 | 2 | |
图3 | 2 | |
(2)如图4,当M为

上任意一点时,根据(1)的结果,猜想AK•BN与AB的数量关系式为______;
(3)对(2)中提出的猜想,依图4给出证明.
考点分析:
相关试题推荐
(2005•潍坊)如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过C、D、E三点的圆O
1交AC的延长线于点F,连接EF、DF.
(1)求证:△AEF∽△FED;
(2)若AD=6,DE=3,求EF的长;
(3)若DF∥BE,试判断△ABE的形状,并说明理由.
查看答案
(2005•重庆)如图,AB是△ABC的外接圆⊙O的直径,D是⊙O上的一点,DE⊥AB于点E,且DE的延长线分别交AC、⊙O、BC的延长线于F、M、G.
(1)求证:AE•BE=EF•EG;
(2)连接BD,若BD⊥BC,且EF=MF=2,求AE和MG的长.
查看答案
(2007•兰州)如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为H.
(1)求证:AH•AB=AC
2;
(2)若过A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AE•AF=AC
2;
(3)若过A的直线与直线CD相交于点P,与⊙O相交于点Q,判断AP•AQ=AC
2是否成立.(不必证明)
查看答案
(2005•河南)空投物资用的某种降落伞的轴截面如图所示,△ABG是等边三角形,C、D是以AB为直径的半圆O的两个三等分点,CG、DG分别交AB于点E、F,试判断

点E、F分别位于所在线段的什么位置?并证明你的结论(证明一种情况即可).
查看答案
(2005•台州)如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.
(1)求点C的坐标;
(2)连接BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB
2=BP•BE,能否推出AP⊥BE?请给出你的结论,并说明理由;
(3)在直线BE上是否存在点Q,使得AQ
2=BQ•EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.
查看答案