满分5 > 初中数学试题 >

(2005•山西)已知⊙O1和⊙O2相交于A、B两点,过A点作⊙O1的切线交⊙O...

(2005•山西)已知⊙O1和⊙O2相交于A、B两点,过A点作⊙O1的切线交⊙O2于点E,连接EB并延长交⊙O1于点C,直线CA交⊙O2于点D.
(1)如图,当点D与点A不重合时,试猜想线段EA=ED是否成立?证明你的结论;
(2)当点D与点A重合时,直线AC与⊙O2有怎样的位置关系?此时若BC=2,CE=8,求⊙O1的直径.

manfen5.com 满分网
(1)本题可通过证角相等来证边相等.连接AB,那么ABED就是圆O2的内接四边形,根据内接四边形的性质,∠ABC=∠D,那么只要再得出∠DAE=∠ABC即可得证,我们发现∠EAD的对顶角正好是圆O1的弦切角,因此∠DAE=∠ABC,由此便可求出∠DAE=∠D,根据等角对等边也就得出本题要求的结论了; (2)DA重合时,CA与圆O2只有一个交点,即相切.那么CA,AE分别是⊙O1和⊙O2的直径(和切线垂直弦必过圆心),根据切割线定理AC2=CB•CE,即可得出AC=4,即圆O1的直径是4. (1)【解析】 EA=ED成立. 证明:连接AB,在EA延长线上取点F; ∵AE是⊙O1的切线,切点为A, ∴∠FAC=∠ABC, ∵∠FAC=∠DAE(对顶角), ∴∠ABC=∠DAE, 而∠ABC是⊙O2内接四边形ABED的外角, ∴∠ABC=∠D, ∴∠DAE=∠D, ∴EA=ED; (2)当点D与点A重合时, 直线CA与⊙O2只有一个公共点, 所以,直线CA与⊙O2相切, 直径为4.
复制答案
考点分析:
相关试题推荐
(2005•常德)如图,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直AB于点F,交BC于点G,连接PC,∠BAC=∠BCP,求解下列问题:
(1)求证:CP是⊙O的切线.
(2)当∠ABC=30°,BG=manfen5.com 满分网,CG=manfen5.com 满分网时,求以PD、PE的长为两根的一元二次方程.
(3)若(1)的条件不变,当点C在劣弧AD上运动时,应再具备什么条件可使结论BG2=BF•BO成立?试写出你的猜想,并说明理由.

manfen5.com 满分网 查看答案
(2005•恩施州)如图,AB为圆O的直径,C为圆O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB,延长AB交DC于点E.
(1)判定直线DE与圆O的位置关系,并说明你的理由;
(2)求证:AC2=AD•AB;
(3)以下两个问题任选一题作答.(若两个问题都答,则以第一问的解答评分)
①若CF⊥AB于点F,试讨论线段CF、CE和DE三者的数量关系;
②若EC=5manfen5.com 满分网,EB=5,求图中阴影部分的面积.

manfen5.com 满分网 查看答案
(2005•甘肃)如图,已知AC、AB是⊙O的弦,AB>AC.
(1)在图(a)中,能否在AB上确定一点E,使得AC2=AE•AB,为什么?
(2)在图(b)中,在条件(1)的结沦下延长EC到P,连接PB,如果PB=PE,试判断PB和⊙O的位置关系,并说明理由.

manfen5.com 满分网 查看答案
(2005•甘肃)如图,AO是△ABC的中线,⊙O与AB边相切于点D.
(1)要使⊙O与AC边也相切,应增加条件______(任写一个);
(2)增加条件后,请你说明⊙O与AC边相切的理由.

manfen5.com 满分网 查看答案
(2005•贵阳)在Rt△ABC中,∠C=90°,AC=6,BC=8,点O在CB上,且AO平分∠BAC,CO=3(如图所示),以点O为圆心,r为半径画圆.
(1)r取何值时,⊙O与AB相切;
(2)r取何值时,⊙O与AB有两个公共点;
(3)当⊙O与AB相切时,设切点为D,在BC上是否存在点P,使△APD的面积为△ABC的面积的一半?若存在,求出CP的长;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.