满分5 > 初中数学试题 >

(2005•河北)图1至图7中的网格图均是20×20的等距网格图(每个小方格的边...

(2005•河北)图1至图7中的网格图均是20×20的等距网格图(每个小方格的边长均为1个单位长).侦察兵王凯在P点观察区域MNCD内的活动情况.当5个单位长的列车(图中的manfen5.com 满分网)以每秒1个单位长的速度在铁路线MN上通过时,列车将阻挡王凯的部分视线,在区域MNCD内形成盲区(不考虑列车的宽度和车厢间的缝隙).设列车车头运行到M点的时刻为0,列车从M点向N点方向运行的时间为t(秒).
(1)在区域MNCD内,请你针对图1,图2,图3,图4中列车位于不同位置的情形分别画出相应的盲区,并在盲区内涂上阴影.
(2)只考虑在区域ABCD内开成的盲区.设在这个区域内的盲区面积是y(平方单位).
①如图5,当5≤t≤10时,请你求出用t表示y的函数关系式;
②如图6,当10≤t≤15时,请你求出用t表示y的函数关系式;
③如图7,当15≤t≤20时,请你求出用t表示y的函数关系式;
④根据①~③中得到的结论,请你简单概括y随t的变化而变化的情况.
(3)根据上述研究过程,请你按不同的时段,就列车行驶过程中在区域MNCD内所形成盲区的面积大小的变化情况提出一个综合的猜想(问题(3)是额外加分,加分幅度为1~4分).
manfen5.com 满分网
manfen5.com 满分网
(1)在P视点看不见的列车后的区域就是盲区,也就是过P和列车的两端的射线交CD于两点,这两点和列车两端构成的梯形就是所指的盲区.如图1的梯形AA1D1D,图2的梯形A2B2C2D2,图3的梯形B3BCC3. (2)①②③中根据t的不同的取值范围对应的不同的图形,然后根据梯形的面积公式表示出y与t的关系式,得出关系式后根据函数的性质来确定④中y的取值 (3)同(2)④. 【解析】 (1)在P视点看不见的列车后的区域就是盲区,也就是过P和列车的两端的射线交CD于两点,这两点和列车两端构成的梯形就是所指的盲区.如图1的梯形AA1D1D,图2的梯形A2B2C2D2,图3的梯形B3BCC3. (2)①如图1,当5≤t≤10时,盲区是梯形AA1D1D ∵O是PQ中点,且OA∥QD, ∴A1,A分别是PD1和PD中点 ∴A1A是△PD1D的中位线. 又∵A1A=t-5,∴D1D=2(t-5) 而梯形AA1D1D的高OQ=10, ∴y=[(t-5)+2(t-5)]×10=15t-75 ∴y=15t-75. ②如图2,当10≤t≤15时,盲区是梯形A2B2C2D2, 易知A2B2是△PC2D2的中位线,且A2B2=5, ∴C2D2=10 又∵梯形A2B2C2D2的高OQ=10, ∴y=(5+10)×10=75 ∴y=75. ③如图3,当15≤t≤20时,盲区是梯形B3BCC3 易知BB3是△PCC3的中位线 且BB3=5-(t-15)=20-t 又∵梯形B3BCC3的高OQ=10, ∴y=[(20-t)+2(20-t)]×10=300-15t ∴y=300-15t. ④当5≤t≤10时,由一次函数y=15t-75的性质可知,盲区的面积由0逐渐增大到75; 当10≤t≤15时,盲区的面积y为定值75; 当15≤t≤20时,由一次函数y=300-15t的性质可知,盲区的面积由75逐渐减小到0.(12分) (3)通过上述研究可知,列车从M点向N点方向运行的过程中,在区域MNCD内盲区面积大小的变化是: ①在0≤t≤10时段内,盲区面积从0逐渐增大到75; ②在10≤t≤15时段内,盲区的面积为定值75; ③在15≤t≤20时段内,盲区面积从75逐渐减小到0.
复制答案
考点分析:
相关试题推荐
(2005•漳州)如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.
(1)求证:△ADE∽△BEC;
(2)当点E为AB边的中点时(如图2),求证:①AD+BC=CD;②DE,CE分别平分∠ADC,∠BCD;
(3)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.
manfen5.com 满分网
查看答案
(2008•旅顺口区)如图,在4×3的正方形方格中,△ABC和△DEC的顶点都在边长为1的小正方形的顶点上.
(1)填空:∠ABC=______°,BC=______

manfen5.com 满分网 查看答案
(2006•自贡)在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=CD,连接CE.
(1)求证:CE=CA;
(2)在上述条件下,若AF⊥CE于点F,且AF平分∠DAE,CD:AE=3:8,求cos∠ACF的值.

manfen5.com 满分网 查看答案
(2005•扬州)若一个矩形的短边与长边的比值为manfen5.com 满分网(黄金分割数),我们把这样的矩形叫做黄金矩形.
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由;
(3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).

manfen5.com 满分网 查看答案
(2005•泰安)已知,△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让三角板在BC所在的直线l上向右平移.当点E与点B重合时,点A恰好落在三角板的斜边DF上.
问:在三角板平移过程中,图中是否存在与线段EB始终相等的线段(假定AB、AC与三角板斜边的交点为G、H)?如果存在,请指出这条线段,并证明;如果不存在,请说明理由.
(说明:结论中不得含有图中未标识的字母)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.