满分5 > 初中数学试题 >

(2005•马尾区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比...

(2005•马尾区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

manfen5.com 满分网
(1)在矩形OABC中,利用边长之间的关系和面积公式即可求得OC,OA的长; (2)连接O′D,通过证明△OCE≌△ABE得到DF⊥O′D,所以DF为⊙O′切线; (3)分两种情况进行分析:①当AO=AP;②当OA=OP,从而得到在直线BC上,除了E点外,既存在⊙O′内的点P,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形. (1)【解析】 在矩形OABC中,设OC=x,则OA=x+2 ∴x(x+2)=15 ∴x1=3,x2=-5 ∵x2=-5(不合题意,舍去) ∴OC=3,OA=5; (2)证明:连接O′D; ∵在矩形OABC中,, ∴△0CE≌△ABE(SAS), ∴EA=EO, ∴∠1=∠2; ∵在⊙O′中,O′O=O′D, ∴∠1=∠3, ∴∠3=∠2, ∴O′D∥AE; ∵DF⊥AE, ∴DF⊥O′D, ∵点D在⊙O′上,O′D为⊙O′的半径, ∴DF为⊙O′切线; (3)【解析】 不同意.理由如下: ①当A0=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点 过P1点作P1H⊥OA于点H,P1H=0C=3; ∵APl=OA=5, ∴AH=4, ∴OH=l, 求得点P1(1,3)同理可得:P4(9,3)(7分); ②当OA=OP时, 同上可求得P2(4,3),P3(-4,3),(9分) ∴在直线BC上,除了E点外,既存在⊙O′内的点P,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形.(10分)
复制答案
考点分析:
相关试题推荐
(2005•南充)如图,点O是Rt△ABC斜边上一点,⊙O与AC,BC分别相切于点M,N.
(1)△AMO是否相似于△ONB?______(填“是”或“否”);
(2)如果OA=4,OB=3,⊙O的半径为______

manfen5.com 满分网 查看答案
(2005•河南)已知⊙O的内接四边形ABCD中,AD∥BC.试判断四边形ABCD的形状,并加以证明.
查看答案
(2005•连云港)如图,在△ABC中,∠ACB=90°,DE是△ABC的中位线,点F在AC延长上,且CF=manfen5.com 满分网AC.求证:四边形ADEF是等腰梯形.

manfen5.com 满分网 查看答案
(2005•柳州)如图,在等腰梯形ABCD中,AD=7,BC=15,∠B=60°,EF为中位线.求:
(1)EF的长.
(2)AB的长.

manfen5.com 满分网 查看答案
(2005•长春)在等腰梯形ABCD中,AD∥BC,∠C=60°,AD=CD,E、F分别在AD、CD上,DE=CF,AF、BE交于点P.请你量一量∠BPF的度数,并证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.