满分5 > 初中数学试题 >

(2005•遂宁)如图,在梯形ABCD中,AD∥BC,BD=DC,∠A=100°...

(2005•遂宁)如图,在梯形ABCD中,AD∥BC,BD=DC,∠A=100°,∠ABD=40°,求∠BDC的度数.

manfen5.com 满分网
两直线平行,同旁内角互补,所以可求得∠ABC,又∠ABD为已知,所以∠DBC即可求出.然后根据等边对等角可求得∠C,最后根据三角形内角和求解∠BDC. 【解析】 ∵AD∥BC, ∴∠A+∠ABC=180°. 又∵∠A=100°, ∴∠ABC=80°. ∴∠DBC=40°. 又∵DB=DC, ∴∠DCB=∠DBC=40°.(4分) ∴∠BDC=180°-40°-40°=100°.
复制答案
考点分析:
相关试题推荐
(2005•湘潭)如图,梯形ABCD,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F.
(1)请写出图中4组相等的线段(已知的相等线段除外);
(2)从你写出的4组相等的线段中选一组加以证明.

manfen5.com 满分网 查看答案
(2006•巴中)如图,梯形ABCD中,AB∥DC,∠B=90°,E为BC上一点,且AE⊥ED.若BC=12,DC=7,BE:EC=1:2,求AB的长.

manfen5.com 满分网 查看答案
(2005•河北)操作示例:
对于边长为a的两个正方形ABCD和EFGH,按图1所示的方式摆放,在沿虚线BD,EG剪开后,可以按图中所示的移动方式拼接为图1中的四边形BNED.
从拼接的过程容易得到结论:
①四边形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
实践与探究:
(1)对于边长分别为a,b(a>b)的两个正方形ABCD和EFGH,按图2所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N;
①证明四边形MNED是正方形,并用含a,b的代数式表示正方形MNED的面积;
②在图2中,将正方形ABCD和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED,请简略说明你的拼接方法(类比图1,用数字表示对应的图形);
(2)对于n(n是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接成为一个正方形?请简要说明你的理由.

manfen5.com 满分网 查看答案
(2005•乌兰察布)图1是由五个边长都是1的正方形纸片拼接而成的,过点A1的直线分别与BC1、BE交于点M、N,且图1被直线MN分成面积相等的上、下两部分.
manfen5.com 满分网manfen5.com 满分网
(1)求manfen5.com 满分网的值;
(2)求MB、NB的长;
(3)将图1沿虚线折成一个无盖的正方体纸盒(图2)后,求点M、N间的距离.
查看答案
(2005•安徽)在一次课题学习中活动中,老师提出了如下一个问题:
点P是正方形ABCD内的一点,过点P画直线l分别交正方形的两边于点M、N,使点P是线段MN的三等分点,这样的直线能够画几条?
经过思考,甲同学给出如下画法:
如图1,过点P画PE⊥AB于E,在EB上取点M,使EM=2EA,画直线MP交AD于N,则直线MN就是符合条件的直线l.
根据以上信息,解决下列问题:
(1)甲同学的画法是否正确?请说明理由;
(2)在图1中,能否画出符合题目条件的直线?如果能,请直接在图1中画出;
(3)如图2,A1,C1分别是正方形ABCD的边AB、CD上的三等分点,且A1C1∥AD.当点P在线段A1C1上时,能否画出符合题目条件的直线?如果能,可以画出几条?
(4)如图3,正方形ABCD边界上的A1,A2,B1,B2,C1,C2,D1,D2都是所在边的三等分点.当点P在正方形ABCD内的不同位置时,试讨论,符合题目条件的直线l的条数的情况.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.