满分5 > 初中数学试题 >

(2005•湖州)如图,四边形ABCD和BEFG均为正方形,则=______

(2005•湖州)如图,四边形ABCD和BEFG均为正方形,则manfen5.com 满分网=______

manfen5.com 满分网
易证△ABG∽△DBF,可得BD:AB=BF:BG=,从而得出结果. 【解析】 连接BD,交GF于H;连接BF. ∵四边形ABCD与BEFG是正方形, ∴BD:AB=BF:BG=,∠ABD=∠GBF=45°, ∴∠ABG=∠DBF, ∴△ABG∽△DBF, ∴=.
复制答案
考点分析:
相关试题推荐
(2005•吉林)如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD与EF的交点.
(1)求证:△BCF≌△DCE;
(2)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.

manfen5.com 满分网 查看答案
(2005•聊城)如图,AB是半圆O的直径,四边形CDEF是内接正方形.
(1)你认为点O在CF边上什么位置,请说明你的理由;
(2)在正方形CDEF的右侧有一正方形FGHK,点G在AB上,H在半圆上,K在EF上.已知正方形CDEF的面积为16,请你计算出正方形FGHK的面积.

manfen5.com 满分网 查看答案
(2005•绵阳)(一)如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验:
抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中的一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点的点数作为直角坐标系中P点的坐标(第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内和边界,下同)的概率;
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为manfen5.com 满分网?若存在,指出其中的一种平移方式;若不存在,请说明理由;
(二)若将(一)中所做实验用的“正四面体骰子”改为“各面标有1至6这六个数字中的一个的正方体骰子”,其余(实验步骤、作用)均不变.将正方形ABCD平移整数个单位,试求出点P落在正方形ABCD面上的概率.

manfen5.com 满分网 manfen5.com 满分网 查看答案
(2005•南充)如图,正方形ABCD的边长为1 cm,AC是对角线,AE平分∠BAC,EF⊥AC.
(1)BE是否等于CF?______(填“是”或“否”).
(2)BE的长为______

manfen5.com 满分网 查看答案
(2005•无锡)已知正方形ABCD的边长AB=k(k是正整数),正△PAE的顶点P在正方形内,顶点E在边AB上,且AE=1.将△PAE在正方形内按图1中所示的方式,沿着正方形的边AB、BC、CD、DA、AB、…连续地翻转n次,使顶点P第一次回到原来的起始位置.
manfen5.com 满分网
(1)如果我们把正方形ABCD的边展开在一直线上,那么这一翻转过程可以看作是△PAE在直线上作连续的翻转运动.图2是k=1时,△PAE沿正方形的边连续翻转过程的展开示意图.请你探索:若k=1,则△PAE沿正方形的边连续翻转的次数n=______时,顶点P第一次回到原来的起始位置;
(2)若k=2,则n=______时,顶点P第一次回到原来的起始位置;若k=3,则n=______时,顶点P第一次回到原来的起始位置;
(3)请你猜测:使顶点P第一次回到原来的起始位置的n值与k之间的关系(请用含k的代数式表示n).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.