满分5 > 初中数学试题 >

(2007•开封)已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点...

(2007•开封)已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.
(1)求证:△CPB≌△AEB;
(2)求证:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.

manfen5.com 满分网
(1),(2)根据条件∠ABE=∠CBP,BE=BP,BC=AB,可证△CBP≌△ABE,所以∠PBE=∠ABE+∠ABP=∠CBP+∠ABP=90°,即PB⊥BE. (3)连接PE,则BE=BP,∠PBE=90°,∠BPE=45°,设AP为k,利用题中的比例式和勾股定理可求得PE=2k,AE=3k,所以cos∠PAE==. (1)证明:∵四边形ABCD是正方形, ∴BC=AB,(1分) ∵∠CBP=∠ABE,BP=BE, ∴△CBP≌△ABE. (2)证明:∵∠CBP=∠ABE, ∴∠PBE=∠ABE+∠ABP=∠CBP+∠ABP=90°, ∴PB⊥BE. (1)、(2)两小题可以一起证明. 证明:∵∠CBP=∠ABE, ∴∠PBE=∠ABE+∠ABP(1分) =∠CBP+∠ABP =90°(2分) ∴PB⊥BE.(3分) 以B为旋转中心,把△CBP按顺时针方向旋转90°.(4分) ∵BC=AB,∠CBA=∠PBE=90°,BE=BP.(5分) ∴△CBP与△ABE重合, ∴△CBP≌△ABE.(6分) (3)【解析】 连接PE, ∵BE=BP,∠PBE=90°, ∴∠BPE=45°,(7分) 设AP为k,则BP=BE=2k, ∴PE2=8k2,(8分) ∴PE=2k, ∵∠BPA=135°,∠BPE=45°, ∴∠APE=90°,(9分) ∴AE=3k, 在直角△APE中:cos∠PAE==.(10分)
复制答案
考点分析:
相关试题推荐
(2009•呼和浩特)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)观察猜想BE与DG之间的大小关系,并证明你的结论;
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2005•淮安)已知:平行四边形ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿DE、BF折叠四边形ABCD,A、C两点恰好都落在O点处,且四边形DEBF为菱形(如图).
(1)求证:四边形ABCD是矩形;
(2)在四边形ABCD中,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
(2005•江西)如图,AB是⊙O的直径,C、E是圆周上关于AB对称的两个不同点,CD∥AB∥EF,BC与AD交于M,AF与BE交于N.
(1)在A、B、C、D、E、F六点中,能构成矩形的四个点有哪些?请一一列出(不要求证明);
(2)求证:四边形AMBN是菱形.

manfen5.com 满分网 查看答案
(2005•菏泽)一块直角三角形木板的一条直角边AB长为1.5m,面积为1.5m2,工人师傅要把它加工成一个面积最大的正方形桌面,请甲、乙两位同学进行设计加工方案,甲设计方案如图1,乙设计方案如图2.你认为哪位同学设计的方案较好?试说明理由.(加工损耗忽略不计,计算结果中可保留分数)
manfen5.com 满分网
查看答案
(2005•黑龙江)已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD
理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.
∵S△PBC+S△PAD=manfen5.com 满分网BC•PF+manfen5.com 满分网AD•PE=manfen5.com 满分网BC(PF+PE)=manfen5.com 满分网BC•EF=manfen5.com 满分网S矩形ABCD
又∵S△PAC+S△PCD+S△PAD=manfen5.com 满分网S矩形ABCD,∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD,∴S△PBC=S△PAC+S△PCD
请你参考上述信息,当点P分别在图2,图3中的位置时,S△PBC、S△PAC、S△PCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.