满分5 > 初中数学试题 >

(2005•贵阳)在Rt△ABC中,∠C=90°,AC=6,BC=8,点O在CB...

(2005•贵阳)在Rt△ABC中,∠C=90°,AC=6,BC=8,点O在CB上,且AO平分∠BAC,CO=3(如图所示),以点O为圆心,r为半径画圆.
(1)r取何值时,⊙O与AB相切;
(2)r取何值时,⊙O与AB有两个公共点;
(3)当⊙O与AB相切时,设切点为D,在BC上是否存在点P,使△APD的面积为△ABC的面积的一半?若存在,求出CP的长;若不存在,请说明理由.

manfen5.com 满分网
(1)⊙O与AB相切,则r等于圆的半径; (2)⊙O与AB有两个公共点,则OA>OB; (3)连接OD,过点P做PH⊥AB于H,根据PH∥OD,,得到PH=(8-x),再根据S△APD=S△ABC,就可以求出PC的长. 【解析】 (1)过点D作DO⊥AB于D, ∵∠1=∠2,∠C=90°, ∴OD=OC=3, 故当r=3时,⊙O与AB相切; (2)在Rt△AOC中,AO=, 而OB=BC-OC=8-3=5, ∴OA>OB ∴当3<r≤5时,⊙O与AB有两个公共点; (3)连接OD,过点P做PH⊥AB于H; 设CP=x,则PB=8-x, ∵D为切点, ∴OD⊥AB, ∴PH∥OD, ∴,, ∴PH=(8-x), ∵AC⊥OC, ∴AC切⊙O于C, ∴AD=AC=6; ∴S△APD=AD•PH=×6×(8-x)=-x; 由题意:S△APD=S△ABC ∴ ∴; 故当PC=时,存在P点,使S△APD=S△ABC.
复制答案
考点分析:
相关试题推荐
(2005•马尾区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

manfen5.com 满分网 查看答案
(2005•三明)如图,已知⊙O1和⊙O2相交于A、B两点,直线CD、EF过点B交⊙O1于点C、E,交⊙O2于点D、F.
(1)求证:△ACD∽△AEF;
(2)若AB⊥CD,且在△AEF中,AF、AE、EF的长分别为3、4、5,求证:AC是⊙O2的切线.

manfen5.com 满分网 查看答案
(2005•沈阳)如图1,△ABC内接于⊙O,AD平分∠BAC,交直线BC于点E,交⊙O于点D.
(1)过点D作MN∥BC,求证:MN是⊙O切线;
(2)求证:AB•AC=AD•AE;
(3)如图2,AE平分∠BAC的外角∠FAC,交BC的延长线于点E,EA的延长线交⊙O于点D.结论AB•AC=AD•AE是否仍然成立?如果成立,请写出证明过程;如果不成立,请说明理由.

manfen5.com 满分网 查看答案
(2006•巴中)如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.
(1)求证:DE是圆O的切线;
(2)若∠C=30°,CD=10cm,求圆O的半径.

manfen5.com 满分网 查看答案
(2005•福州)已知:如图,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D.则△CDQ是等腰三角形.
对上述命题证明如下:
证明:连接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C点
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.