满分5 > 初中数学试题 >

(2005•马尾区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比...

(2005•马尾区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

manfen5.com 满分网
(1)在矩形OABC中,利用边长之间的关系和面积公式即可求得OC,OA的长; (2)连接O′D,通过证明△OCE≌△ABE得到DF⊥O′D,所以DF为⊙O′切线; (3)分两种情况进行分析:①当AO=AP;②当OA=OP,从而得到在直线BC上,除了E点外,既存在⊙O′内的点P,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形. (1)【解析】 在矩形OABC中,设OC=x,则OA=x+2 ∴x(x+2)=15 ∴x1=3,x2=-5 ∵x2=-5(不合题意,舍去) ∴OC=3,OA=5; (2)证明:连接O′D; ∵在矩形OABC中,, ∴△0CE≌△ABE(SAS), ∴EA=EO, ∴∠1=∠2; ∵在⊙O′中,O′O=O′D, ∴∠1=∠3, ∴∠3=∠2, ∴O′D∥AE; ∵DF⊥AE, ∴DF⊥O′D, ∵点D在⊙O′上,O′D为⊙O′的半径, ∴DF为⊙O′切线; (3)【解析】 不同意.理由如下: ①当A0=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点 过P1点作P1H⊥OA于点H,P1H=0C=3; ∵APl=OA=5, ∴AH=4, ∴OH=l, 求得点P1(1,3)同理可得:P4(9,3)(7分); ②当OA=OP时, 同上可求得P2(4,3),P3(-4,3),(9分) ∴在直线BC上,除了E点外,既存在⊙O′内的点P,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形.(10分)
复制答案
考点分析:
相关试题推荐
(2005•三明)如图,已知⊙O1和⊙O2相交于A、B两点,直线CD、EF过点B交⊙O1于点C、E,交⊙O2于点D、F.
(1)求证:△ACD∽△AEF;
(2)若AB⊥CD,且在△AEF中,AF、AE、EF的长分别为3、4、5,求证:AC是⊙O2的切线.

manfen5.com 满分网 查看答案
(2005•沈阳)如图1,△ABC内接于⊙O,AD平分∠BAC,交直线BC于点E,交⊙O于点D.
(1)过点D作MN∥BC,求证:MN是⊙O切线;
(2)求证:AB•AC=AD•AE;
(3)如图2,AE平分∠BAC的外角∠FAC,交BC的延长线于点E,EA的延长线交⊙O于点D.结论AB•AC=AD•AE是否仍然成立?如果成立,请写出证明过程;如果不成立,请说明理由.

manfen5.com 满分网 查看答案
(2006•巴中)如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.
(1)求证:DE是圆O的切线;
(2)若∠C=30°,CD=10cm,求圆O的半径.

manfen5.com 满分网 查看答案
(2005•福州)已知:如图,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D.则△CDQ是等腰三角形.
对上述命题证明如下:
证明:连接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C点
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

manfen5.com 满分网 查看答案
(2005•广州)如图,AB是圆O的弦,直线DE切圆O于点C,AC=BC,
求证:DE∥AB.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.