(2005•台州)如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.
(1)求点C的坐标;
(2)连接BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB
2=BP•BE,能否推出AP⊥BE?请给出你的结论,并说明理由;
(3)在直线BE上是否存在点Q,使得AQ
2=BQ•EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.
考点分析:
相关试题推荐
(2005•长春)在等腰梯形ABCD中,AD∥BC,∠C=60°,AD=CD,E、F分别在AD、CD上,DE=CF,AF、BE交于点P.请你量一量∠BPF的度数,并证明你的结论.
查看答案
(2005•青岛)如图,在等腰梯形ABCD中,AD∥BC,M、N分别为AD、BC的中点,E、F分别是BM、CM的中点.
(1)求证:△ABM≌△CDM;
(2)四边形MENF是什么图形?请证明你的结论;
(3)若四边形MENF是正方形,则梯形的高与底边BC有何数量关系?并请说明理由.
查看答案
(2005•沈阳)如图,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD相交于点O,E是BC边上一个动点(E点不与B、C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.
(1)求证:四边形EFOG的周长等于2 OB;
(2)请你将上述题目的条件“梯形ABCD中,AD∥BC,AB=DC”改为另一种四边形,其他条件不变,使得结论“四边形EFOG的周长等于2 OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明.
查看答案
(2005•中山)如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM中点.
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.
查看答案
(2005•镇江)已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.
(1)求证:△BCE≌△AFE;
(2)若AB⊥BC且BC=4,AB=6,求EF的长.
查看答案