满分5 > 初中数学试题 >

(2005•沈阳)如图,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC...

(2005•沈阳)如图,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD相交于点O,E是BC边上一个动点(E点不与B、C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.
(1)求证:四边形EFOG的周长等于2 OB;
(2)请你将上述题目的条件“梯形ABCD中,AD∥BC,AB=DC”改为另一种四边形,其他条件不变,使得结论“四边形EFOG的周长等于2 OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明.

manfen5.com 满分网
(1)很显然四边形OFEG是个平行四边形,那么OF=GE,OG=EF,我们可通过全等三角形ABC和DBC全等得出∠ACB=∠DBC,然后根据GE∥AC,可得出三角形BGE是等腰三角形,那么GE=GB,因此OB=OG+GE而OG=EF,GE=OF,由此可得出四边形EFOG的周长是2OB. (2)由(1)的解题思路我们可看出,要得到(1)的结论,必须满足的条件应该是三角形ABC和DBC全等,那么AB和CD边必须相等,四边形的对角线必须相等,因此我们可将等腰梯形换成正方形或矩形,就能得出和(1)一样的结论了. (1)证明:如图1 ∵四边形ABCD是梯形,AD∥BC,AB=CD, ∴四边形ABCD是等腰梯形, ∴∠ABC=∠DCB. 又∵BC=CB,AB=DC, ∴△ABC≌△DCB. ∴∠1=∠2. 又∵GE∥AC, ∴∠2=∠3. ∴∠1=∠3. ∴EG=BG. ∵EG∥OC,EF∥OB, ∴四边形EGOF是平行四边形. ∴EG=OF,EF=OG. ∴四边形EGOF的周长=2(OG+GE)=2(OG+GB)=2OB (2)【解析】 方法1,如图2,已知矩形ABCD中,对角线AC、BD相交于点O,E为BC上一个动点,(点E不与B、C两点重合)EF∥BD,交AC于点F,EG∥AC交BD于点G 求证:四边形EFOG的周长等于2OB. 方法2:如图3,已知正方形ABCD中,对角线AC、BD相交于点O,E为BC上一个动点,(点E不与B、C两点重合)EF∥BD,交AC于点F,EG∥AC交BD于点G 求证:四边形EFOG的周长等于2OB.
复制答案
考点分析:
相关试题推荐
(2005•中山)如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM中点.
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.

manfen5.com 满分网 查看答案
(2005•镇江)已知:如图,梯形ABCD中,AD∥BC,E是AB的中点,直线CE交DA的延长线于点F.
(1)求证:△BCE≌△AFE;
(2)若AB⊥BC且BC=4,AB=6,求EF的长.

manfen5.com 满分网 查看答案
(2005•北京)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=2EA,CF=2FD.求证:∠BEC=∠CFB.

manfen5.com 满分网 查看答案
(2005•河南)如图,梯形ABCD中,AD∥BC,AB=DC,P为梯形ABCD外一点,PA、PD分别交线段BC于点E、F,且PA=PD.
(1)写出图中三对你认为全等的三角形(不再添加辅助线);
(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.

manfen5.com 满分网 查看答案
(2005•南宁)如图,点P是圆上的一个动点,弦AB=manfen5.com 满分网.PC是∠APB的平分线,∠BAC=30°.
(1)当∠PAC等于多少度时,四边形PACB有最大面积,最大面积是多少?
(2)当∠PAC等于多少度时,四边形PACB是梯形,说明你的理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.