(2005•海淀区)已知△ABC,分别以AB、BC、CA为边向形外作等边三角形ABD、等边三角形BCE、等边三角形ACF.
(1)如图1,当△ABC是等边三角形时,请你写出满足图中条件,四个成立的结论;
(2)如图2,当△ABC中只有∠ACB=60°时,请你证明S
△ABC与S
△ABD的和等于S
△BCE与S
△ACF的和.
考点分析:
相关试题推荐
(2005•吉林)图中的虚线网格我们称之为正三角形网格,它的每一个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.

(1)直接写出单位正三角形的高与面积;
(2)图1中的平行四边形ABCD含有多少个单位正三角形?平行四边形ABCD的面积是多少?
(3)求出图1中线段AC的长(可作辅助线);
(4)求出图2中四边形EFGH的面积.
查看答案
(2005•吉林)图中的虚线网格我们称之为正三角形网格,它的每一个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.

(1)直接写出单位正三角形的高为______
查看答案
(2005•柳州)如图,在矩形ABCD中,AE平分∠BAD,∠1=15.
(1)求∠2的度数;
(2)求证:BO=BE.
查看答案
(2006•余姚市)如图:等边三角形ABC的边长为1,P为AB边上的一个动点(不包括A、B),过P作PQ⊥BC于Q,过Q作QR⊥AC于R,再过R作RS⊥AB于S.设AP=x,AS=y.
(1)求y与x之间的函数关系式,并写出自变量取值范围;
(2)若SP=

,求AP的长;
(3)若S、P重合点为T,试说明当P、S不重合时,P、S中的哪一个更接近T点?将上述操作,即按逆时针方向,过垂足作相邻边的垂线,若操作不断进行,试依据你的结论,猜想无论P的初始位置如何,P、S…等这些点最终将会出现怎样的趋势?(只要直接写出结果)
查看答案
(2007•开封)如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D.
(1)若∠BAC=30°,求证:AD=BD;
(2)若AP平分∠BAC且交BD于P,求∠BPA的度数.
查看答案