(2005•青海)二次函数y=ax
2+bx+c(a≠0)的图象经过点A(3,0),B(2,-3),并且以x=1为对称轴.
(1)求此函数的解析式;
(2)作出二次函数的大致图象;
(3)在对称轴x=1上是否存在一点P,使△PAB中PA=PB?若存在,求出P点的坐标;若不存在,说明理由.
考点分析:
相关试题推荐
(2005•河南)如图1,Rt△ABC中,∠C=90°,AC=12,BC=5,点M在边AB上,且AM=6.
(1)动点D在边AC上运动,且与点A,C均不重合,设CD=x.
①设△ABC与△ADM的面积之比为y,求y与x之间的函数关系式(写出自变量的取值范围);
②当x取何值时,△ADM是等腰三角形?写出你的理由.
(2)如图2,以图1中的为一组邻边的矩形中,动点在矩形边上运动一周,能使是M为顶角的等腰三角形共有多少个?(直接写结果,不要求说明理由)
查看答案
(2007•开封)已知:O是坐标原点,P(m,n)(m>0)是函数y=

(k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+

.
(1)当n=1时,求点A的坐标;
(2)若OP=AP,求k的值;
(3)设n是小于20的整数,且k≠

,求OP
2的最小值.
查看答案
(2005•武汉)已知:如图,直线

交x轴于O
1,交y轴于O
2,⊙O
2与x轴相切于O点,交直线O
1O
2于P点,以O
1为圆心,O
1P为半径的圆交x轴于A、B两点,PB交⊙O
2于点F,⊙O
1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O
2的切线;
(3)EO
1的延长线交⊙O
1于C点,若G为BC上一动点,以O
1G为直径作⊙O
3交O
1C于点M,交O
1B于N.下列结论:①O
1M•O
1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.
查看答案
(2005•中原区)如图,已知平面直角坐标系中三个点A(-8,0)、B(2,0)、C

,O为坐标原点.以AB为直径的⊙M与y轴的负半轴交于点D.
(1)求直线CD的解析式;
(2)求证:直线CD是⊙M的切线;
(3)过点A作AE⊥CD,垂足为E,且AE与⊙M相交于点F,求一个一元二次方程,使它的两个根分别是AE和AF.
查看答案

(2005•杭州)在平面直角坐标系内,已知点A(2,1),O为坐标原点.请你在坐标轴上确定点P,使得△AOP成为等腰三角形.在给出的坐标系中把所有这样的点P都找出来,画上实心点,并在旁边标上P
1,P
2,…,P
K的坐标(有k个就标到P
K为止,不必写出画法).
查看答案