满分5 > 初中数学试题 >

(2007•开封)已知:O是坐标原点,P(m,n)(m>0)是函数y=(k>0)...

(2007•开封)已知:O是坐标原点,P(m,n)(m>0)是函数y=manfen5.com 满分网(k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+manfen5.com 满分网
(1)当n=1时,求点A的坐标;
(2)若OP=AP,求k的值;
(3)设n是小于20的整数,且k≠manfen5.com 满分网,求OP2的最小值.

manfen5.com 满分网
(1)根据三角形的面积公式得到s=a•n.而s=1+,把n=1代入就可以得到a的值. (2)易证△OPA是等腰直角三角形,得到m=n=,根据三角形的面积S=•an,就可以解得k的值. (3)易证△OPQ∽△OAP,根据相似三角形面积的比等于相似比的平方,就可以得到关于k,n的方程,从而求出k,n的值.得到OP的值. 【解析】 过点P作PQ⊥x轴于Q,则PQ=n,OQ=m, (1)当n=1时,s=,(1分) ∴a==.(3分) (2)解法一:∵OP=AP,PA⊥OP, ∴△OPA是等腰直角三角形.(4分) ∴m=n=.(5分) ∴1+=•an. 即n4-4n2+4=0,(6分) ∴k2-4k+4=0, ∴k=2.(7分) 解法二:∵OP=AP,PA⊥OP, ∴△OPA是等腰直角三角形.(4分) ∴m=n.(5分) 设△OPQ的面积为s1 则:s1=∴•mn=(1+), 即:n4-4n2+4=0,(6分) ∴k2-4k+4=0, ∴k=2.(7分) (3)解法一:∵PA⊥OP,PQ⊥OA, ∴△OPQ∽△OAP. 设:△OPQ的面积为s1,则=(8分) 即:=化简得: 2n4+2k2-kn4-4k=0(9分) (k-2)(2k-n4)=0, ∴k=2或k=(舍去),(10分) ∴当n是小于20的整数时,k=2. ∵OP2=n2+m2=n2+又m>0,k=2, ∴n是大于0且小于20的整数. 当n=1时,OP2=5, 当n=2时,OP2=5, 当n=3时,OP2=32+=9+=,(11分) 当n是大于3且小于20的整数时, 即当n=4、5、6…19时,OP2的值分别是: 42+、52+、62+…192+, ∵192+>182+>32+>5,(12分) ∴OP2的最小值是5.(13分)
复制答案
考点分析:
相关试题推荐
(2005•武汉)已知:如图,直线manfen5.com 满分网交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心,O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.
manfen5.com 满分网
查看答案
(2005•中原区)如图,已知平面直角坐标系中三个点A(-8,0)、B(2,0)、Cmanfen5.com 满分网,O为坐标原点.以AB为直径的⊙M与y轴的负半轴交于点D.
(1)求直线CD的解析式;
(2)求证:直线CD是⊙M的切线;
(3)过点A作AE⊥CD,垂足为E,且AE与⊙M相交于点F,求一个一元二次方程,使它的两个根分别是AE和AF.

manfen5.com 满分网 查看答案
manfen5.com 满分网(2005•杭州)在平面直角坐标系内,已知点A(2,1),O为坐标原点.请你在坐标轴上确定点P,使得△AOP成为等腰三角形.在给出的坐标系中把所有这样的点P都找出来,画上实心点,并在旁边标上P1,P2,…,PK的坐标(有k个就标到PK为止,不必写出画法).
查看答案
(2005•绍兴)如图,在平面直角坐标系中,已知点A(-2,0),B(2,0).
(1)画出等腰三角形ABC(画一个即可);
(2)写出(1)中画出的三角形ABC的顶点C的坐标.

manfen5.com 满分网 查看答案
(2005•荆门)已知:关于x的方程x2-(k+1)x+manfen5.com 满分网k2+1=0的两根是一个矩形两邻边的长.
(1)k取何值时,方程有两个实数根;
(2)当矩形的对角线长为manfen5.com 满分网时,求k的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.