满分5 > 初中数学试题 >

(2005•资阳)如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且...

(2005•资阳)如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).
(1)求点B的坐标;
(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;
(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)在Rt△OAB中,由∠AOB=30°可以得到OB=,过点B作BD垂直于x轴,垂足为D,利用已知条件可以求出OD,BD,也就求出B的坐标; (2)根据待定系数法把A,B,O三点坐标代入函数解析式中就可以求出解析式; (3)设存在点C(x,x2+x),使四边形ABCO面积最大,而△OAB面积为定值,只要△OBC面积最大,四边形ABCO面积就最大.过点C作x轴的垂线CE,垂足为E,交OB于点F,则S△OBC=S△OCF+S△BCF=|CF|•|OE|+|CF|•|ED|=|CF|•|OD|=|CF|,而|CF|=yC-yF=x2+x-x=-x2+x,这样可以得到S△OBC=x2+x,利用二次函数就可以求出△OBC面积最大值,也可以求出C的坐标. 【解析】 (1)在Rt△OAB中, ∵∠AOB=30°, ∴OB=, 过点B作BD垂直于x轴,垂足为D,则OD=,BD=, ∴点B的坐标为().(1分) (2)将A(2,0)、B()、O(0,0)三点的坐标代入y=ax2+bx+c, 得(2分) 解方程组,有a=,b=,c=0.(3分) ∴所求二次函数解析式是y=x2+x.(4分) (3)设存在点C(x,x2+x)(其中0<x<),使四边形ABCO面积最大 ∵△OAB面积为定值, ∴只要△OBC面积最大,四边形ABCO面积就最大.(5分) 过点C作x轴的垂线CE,垂足为E,交OB于点F, 则S△OBC=S△OCF+S△BCF=|CF|•|OE|+|CF|•|ED|=|CF|•|OD|=|CF|,(6分) 而|CF|=yC-yF=x2+x-x=-x2+x, ∴S△OBC=x2+x.(7分) ∴当x=时,△OBC面积最大,最大面积为.(8分) 此时,点C坐标为(),四边形ABCO的面积为.(9分)
复制答案
考点分析:
相关试题推荐
(2006•巴中)如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半径的圆交x轴于A、B两点,过点B作⊙O′的切线,交y轴于点C,过点0′作x轴的垂线MN,垂足为D,一条抛物线(对称轴与y轴平行)经过A、B两点,且顶点在直线BC上.
(1)求直线BC的解析式;
(2)求抛物线的解析式;
(3)设抛物线与y轴交于点P,在抛物线上是否存在一点Q,使四边形DBPQ为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.
(1)求此抛物线的解析式;
(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.
①求证:PB=PS;
②判断△SBR的形状;
③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.
manfen5.com 满分网
查看答案
(2007•开封)已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.
查看答案
(2008•毕节地区)如图所示,已知两点A(-1,0),B(4,0),以AB为直径的半圆P交y轴于点C.
(1)求经过A、B、C三点的抛物线的解析式;
(2)设弦AC的垂直平分线交OC于D,连接AD并延长交半圆P于点E,manfen5.com 满分网manfen5.com 满分网相等吗?请证明你的结论;
(3)设点M为x轴负半轴上一点,OM=manfen5.com 满分网AE,是否存在过点M的直线,使该直线与(1)中所得的抛物线的两个交点到y轴的距离相等?若存在,求出这条直线对应函数的解析式;若不存在.请说明理由.

manfen5.com 满分网 查看答案
(2005•安徽)一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个.
例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个.
(1)根据题意,完成下表:
车站序号在第x个车站起程时邮政车厢邮包总数
1n-1
2(n-1)-1+(n-2)=2(n-2)
32(n-2)-2+(n-3)=3(n-3)
4
5
n
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、n表示);
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.