满分5 > 初中数学试题 >

(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、...

(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.
(1)求此抛物线的解析式;
(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.
①求证:PB=PS;
②判断△SBR的形状;
③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.
manfen5.com 满分网
(1)根据B点的坐标以及矩形的面积可以求出矩形的四个顶点的坐标,根据待定系数法就可以求出抛物线的解析式; (2)①过点B作BN⊥PS,垂足为N,可以设P的坐标是(a,a2+1),根据勾股定理就可以用a表示出PB=PS的长,由此可以证明; ②判断△SBR的形状,根据①同理可知BQ=QR,根据等边对等角就可以证明∠SBR=90度,则△SBR为直角三角形; ③若以P、S、M为顶点的三角形与以Q、M、R为顶点的三角形相似,有△PSM∽△MRQ和△PSM∽△QRM两种情况,根据相似三角形的对应边的比相等就可以求出. 【解析】 (1)方法一: ∵B点坐标为(0.2), ∴OB=2, ∵矩形CDEF面积为8, ∴CF=4. ∴C点坐标为(-2,2).F点坐标为(2,2). 设抛物线的解析式为y=ax2+bx+c. 其过三点A(0,1),C(-2.2),F(2,2). 得, 解这个方程组,得a=,b=0,c=1, ∴此抛物线的解析式为y=x2+1.(3分) 方法二: ∵B点坐标为(0.2), ∴OB=2, ∵矩形CDEF面积为8, ∴CF=4. ∴C点坐标为(-2,2), 根据题意可设抛物线解析式为y=ax2+c. 其过点A(0,1)和C(-2.2) 解这个方程组,得a=,c=1 此抛物线解析式为y=x2+1. (2)①证明:如图(2)过点B作BN⊥PS,垂足为N. ∵P点在抛物线y=x2+1上.可设P点坐标为(a,a2+1). ∴PS=a2+1,OB=NS=2,BN=-a. ∴PN=PS-NS=, 在Rt△PNB中. PB2=PN2+BN2=(a2-1)2+a2=(a2+1)2 ∴PB=PS=.(6分) ②根据①同理可知BQ=QR. ∴∠1=∠2, 又∵∠1=∠3, ∴∠2=∠3, 同理∠SBP=∠5(7分) ∴2∠5+2∠3=180° ∴∠5+∠3=90° ∴∠SBR=90度. ∴△SBR为直角三角形.(8分) ③方法一:如图(3)作QN⊥PS, 设PS=b,QR=c, ∵由①知PS=PB=b.QR=QB=c,PQ=b+c.PN=b-c. ∴QN2=SR2=(b+c)2-(b-c)2 ∴.(9分) 假设存在点M.且MS=x,则MR=. 若使△PSM∽△MRQ, 则有. 即x2-2x+bc=0 ∴. ∴SR=2 ∴M为SR的中点.(11分) 若使△PSM∽△QRM, 则有. ∴. ∴. ∴M点即为原点O. 综上所述,当点M为SR的中点时.△PSM∽△MRQ; 当点M为原点时,△PSM∽△MRQ.(13分) 方法二: 若以P、S、M为顶点的三角形与以Q、M、R为顶点的三角形相似, ∵∠PSM=∠MRQ=90°, ∴有△PSM∽△MRQ和△PSM∽△QRM两种情况. 当△PSM∽△MRQ时.∠SPM=∠RMQ,∠SMP=∠RQM. 由直角三角形两锐角互余性质.知∠PMS+∠QMR=90度. ∴∠PMQ=90度.(9分) 取PQ中点为T.连接MT.则MT=PQ=(QR+PS).(10分) ∴MN为直角梯形SRQP的中位线, ∴点M为SR的中点(11分) ∴=1 当△PSM∽△QRM时, ∴QB=BP ∵PS∥OB∥QR ∴点M为原点O. 综上所述,当点M为SR的中点时,△PSM∽△MRQ; 当点M为原点时,△PSM∽△QRM.(13分)
复制答案
考点分析:
相关试题推荐
(2007•开封)已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.
查看答案
(2008•毕节地区)如图所示,已知两点A(-1,0),B(4,0),以AB为直径的半圆P交y轴于点C.
(1)求经过A、B、C三点的抛物线的解析式;
(2)设弦AC的垂直平分线交OC于D,连接AD并延长交半圆P于点E,manfen5.com 满分网manfen5.com 满分网相等吗?请证明你的结论;
(3)设点M为x轴负半轴上一点,OM=manfen5.com 满分网AE,是否存在过点M的直线,使该直线与(1)中所得的抛物线的两个交点到y轴的距离相等?若存在,求出这条直线对应函数的解析式;若不存在.请说明理由.

manfen5.com 满分网 查看答案
(2005•安徽)一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个.
例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个.
(1)根据题意,完成下表:
车站序号在第x个车站起程时邮政车厢邮包总数
1n-1
2(n-1)-1+(n-2)=2(n-2)
32(n-2)-2+(n-3)=3(n-3)
4
5
n
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、n表示);
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?
查看答案
(2005•长春)一辆电瓶车在实验过程中,前10秒行驶的路程s(米)与时间t(秒)满足关系式s=at2,第10秒末开始匀速行驶,第24秒末开始刹车,第28秒末停在离终点20米处.下图是电瓶车行驶过程中第2秒记录一次的图象.
(1)求电瓶车从出发到刹车时的路程s(米)与时间t(秒)的函数关系式.
(2)如果第24秒末不刹车继续匀速行驶,那么出发多少秒后通过终点?
(3)如果10秒后仍按s=at2的运动方式行驶,那么出发多少秒后通过终点?
(参考数据:manfen5.com 满分网≈2.24,manfen5.com 满分网≈2.45,计算结果保留两个有效数字.)

manfen5.com 满分网 查看答案
(2005•长沙)某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.
(1)求y关于x的函数关系式;
(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;
(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.