满分5 > 初中数学试题 >

(2009•临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点...

(2009•临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.
manfen5.com 满分网
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
(1)在AB上取一点M,使AM=EC,连接ME,根据已知条件利用ASA判定△AME≌△ECF,因为全等三角形的对应边相等,所以AE=EF. (2)在BA的延长线上取一点N,使AN=CE,连接NE,根据已知利用ASA判定△ANE≌△ECF,因为全等三角形的对应边相等,所以AE=EF. 【解析】 (1)正确.(1分) 证明:在AB上取一点M,使AM=EC,连接ME.(2分) ∴BM=BE, ∴∠BME=45°, ∴∠AME=135°, ∵CF是外角平分线, ∴∠DCF=45°, ∴∠ECF=135°, ∴∠AME=∠ECF, ∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°, ∴∠BAE=∠CEF, ∴△AME≌△ECF(ASA),(5分) ∴AE=EF.(6分) (2)正确.(7分) 证明:在BA的延长线上取一点N. 使AN=CE,连接NE.(8分) ∴BN=BE, ∴∠N=∠NEC=45°, ∵CF平分∠DCG, ∴∠FCE=45°, ∴∠N=∠ECF, ∵四边形ABCD是正方形, ∴AD∥BE, ∴∠DAE=∠BEA, 即∠DAE+90°=∠BEA+90°, ∴∠NAE=∠CEF, ∴△ANE≌△ECF(ASA)(10分) ∴AE=EF.(11分)
复制答案
考点分析:
相关试题推荐
(2009•南充)如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.
求证:AF=BF+EF.

manfen5.com 满分网 查看答案
manfen5.com 满分网(2012•黔南州)如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由;
(3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.
查看答案
(2009•宁德)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数,并说明理由;
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.manfen5.com 满分网
查看答案
(2009•黔东南州)如图,l1,l2,l3,l4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h,正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25.
(1)连接EF,证明△ABE、△FBE、△EDF、△CDF的面积相等.
(2)求h的值.

manfen5.com 满分网 查看答案
(2009•清远)如图,已知正方形ABCD,点E是AB上的一点,连接CE,以CE为一边,在CE的上方作正方形CEFG,连接DG.
求证:△CBE≌△CDG.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.