满分5 > 初中数学试题 >

(2012•黔南州)如图1,在边长为5的正方形ABCD中,点E、F分别是BC、D...

manfen5.com 满分网(2012•黔南州)如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由;
(3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.
(1)由同角的余角相等得到∠1=∠2,故有Rt△ABE∽Rt△ECF⇒AB:CE=BE:CF⇒EC:CF=AB:BE=5:2; (2)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP; (3)先证△DAM≌△ABE,继而可得四边形DMEP是平行四边形. 【解析】 (1)如图1.∵AE⊥EF, ∴∠2+∠3=90°, ∵四边形ABCD为正方形, ∴∠B=∠C=90°, ∵∠1+∠3=90°, ∴∠1=∠2, ∴△ABE∽△ECF, ∴AB:CE=BE:CF, ∴EC:CF=AB:BE=5:2 (2)如图2,在AB上取BG=BE,连接EG, ∵ABCD为正方形, ∴AB=BC, ∵BE=BG, ∴AG=EC, 在△AGE和△ECP中 , ∴△AGE≌△ECP(ASA), ∴AE=EP; (3)存在.顺次连接DMEP. 如图3. 在AB取点M,使AM=BE, ∵AE⊥EF, ∴∠2+∠3=90°, ∵四边形ABCD为正方形,∴∠B=∠BCD=90°, ∴∠1+∠3=90°, ∴∠1=∠2, ∵∠DAM=∠ABE=90°,DA=AB, ∴△DAM≌△ABE(SAS), ∴DM=AE, ∵AE=EP, ∴DM=PE, ∵∠1=∠5,∠1+∠4=90°, ∴∠4+∠5=90°, ∴DM⊥AE, ∴DM∥PE ∴四边形DMEP是平行四边形.
复制答案
考点分析:
相关试题推荐
(2009•宁德)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数,并说明理由;
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.manfen5.com 满分网
查看答案
(2009•黔东南州)如图,l1,l2,l3,l4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h,正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25.
(1)连接EF,证明△ABE、△FBE、△EDF、△CDF的面积相等.
(2)求h的值.

manfen5.com 满分网 查看答案
(2009•清远)如图,已知正方形ABCD,点E是AB上的一点,连接CE,以CE为一边,在CE的上方作正方形CEFG,连接DG.
求证:△CBE≌△CDG.

manfen5.com 满分网 查看答案
(2009•十堰)如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.
(1)求证:DE-BF=EF;
(2)当点G为BC边中点时,试探究线段EF与GF之间的数量关系,并说明理由;
(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).
manfen5.com 满分网
查看答案
(2009•天水)在正方形ABCD中,点P是CD边上一动点,连接PA,分别过点B、D作BE⊥PA、DF⊥PA,垂足分别为E、F,如图①.
(1)请探究BE、DF、EF这三条线段的长度具有怎样的数量关系?若点P在DC的延长线上,如图②,那么这三条线段的长度之间又具有怎样的数量关系?若点P在CD的延长线上呢,如图③,请分别直接写出结论;
(2)就(1)中的三个结论选择一个加以证明.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.