满分5 > 初中数学试题 >

(2009•黔东南州)如图,l1,l2,l3,l4是同一平面内的四条平行直线,且...

(2009•黔东南州)如图,l1,l2,l3,l4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h,正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25.
(1)连接EF,证明△ABE、△FBE、△EDF、△CDF的面积相等.
(2)求h的值.

manfen5.com 满分网
(1)△ABE和△FBE同底同高,因而面积相等,同理△FBE和△EDF的面积相等,△EDF和△CDF的面积相等,因而△ABE、△FBE、△EDF、△CDF的面积相等. (2)根据正方形的面积就可以求出边长,得到AE,AB的长,根据勾股定理得到BE的长,△ABE的面积是长方形的面积的,再根据三角形的面积等于BE•h就可以求出h的长. (1)证明:连接EF, ∵l1∥l2∥l3∥l4,且四边形ABCD是正方形, ∴BE∥FD,BF∥ED, ∴四边形EBFD为平行四边形, ∴BE=FD,(2分) 又∵l1、l2、l3和l4之间的距离为h, ∴S△ABE=BE•h,S△FBE=BE•h, S△EDF=FD•h,S△CDF=FD•h, ∴S△ABE=S△FBE=S△EDF=S△CDF.(4分) (2)【解析】 过A点作AH⊥BE于H点,过E点作EM⊥FD于M点, 方法一:∵S△ABE=S△FBE=S△EDF=S△CDF, 又∵正方形ABCD的面积是25, ∴S△ABE=,且AB=AD=5,(7分) 又∵l1∥l2∥l3∥l4,每相邻的两条平行直线间的距离为h, ∴AH=EM=h, ∵AH⊥l2,EM⊥l3,l2∥l3, ∴∠3=∠4=90°,AH∥EM, ∴∠1=∠2, ∴△AHE≌△EMD, ∴AE=DE, 同理:BF=FC, ∴E、F分别是AD与BC的中点, ∴AE=AD=, ∴在Rt△ABE中, BE==,(10分) 又∵AB•AE=BE•AH, ∴.(12分) 方法二:不妨设BE=FD=x(x>0), 则S△ABE=S△FBE=S△EDF=S△CDF=,(6分) 又∵正方形ABCD的面积是25, ∴S△ABE=xh=,且AB=5, 则xh=①,(8分) 又∵在Rt△ABE中:AE=, 又∵∠BAE=90°,AH⊥BE, ∴Rt△ABE∽Rt△HAE, ∴,即, 变形得:(hx)2=25(x2-52)②(10分), 把①两边平方后代入②得:=25(x2-52)③, 解方程③得x=(x=-舍去), 把x=代入①得:h=.(12分)
复制答案
考点分析:
相关试题推荐
(2009•清远)如图,已知正方形ABCD,点E是AB上的一点,连接CE,以CE为一边,在CE的上方作正方形CEFG,连接DG.
求证:△CBE≌△CDG.

manfen5.com 满分网 查看答案
(2009•十堰)如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.
(1)求证:DE-BF=EF;
(2)当点G为BC边中点时,试探究线段EF与GF之间的数量关系,并说明理由;
(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).
manfen5.com 满分网
查看答案
(2009•天水)在正方形ABCD中,点P是CD边上一动点,连接PA,分别过点B、D作BE⊥PA、DF⊥PA,垂足分别为E、F,如图①.
(1)请探究BE、DF、EF这三条线段的长度具有怎样的数量关系?若点P在DC的延长线上,如图②,那么这三条线段的长度之间又具有怎样的数量关系?若点P在CD的延长线上呢,如图③,请分别直接写出结论;
(2)就(1)中的三个结论选择一个加以证明.
manfen5.com 满分网
查看答案
(2009•湘潭)如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形,连接BG,DE.
(1)观察图形,猜想BG与DE之间的大小关系,并证明你的结论;
(2)若延长BG交DE于点H,求证:BH⊥DE.

manfen5.com 满分网 查看答案
(2009•湘西州)如图,等腰直角△ABC腰长为a,现分别按图1,图2方式在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC的面积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2
manfen5.com 满分网
(1)在图1中,求AD:AB的值;在图2中,求AP:AB的值;
(2)比较S1+S2与S的大小.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.