满分5 > 初中数学试题 >

(2009•孝感)三个牧童A、B、C在一块正方形的牧场上看守一群牛,为保证公平合...

(2009•孝感)三个牧童A、B、C在一块正方形的牧场上看守一群牛,为保证公平合理,他们商量将牧场划分为三块分别看守,划分的原则是:①每个人看守的牧场面积相等;②在每个区域内,各选定一个看守点,并保证在有情况时他们所需走的最大距离(看守点到本区域内最远处的距离)相等.按照这一原则,他们先设计了一种如图1的划分方案:把正方形牧场分成三块相等的矩形,大家分头守在这三个矩形的中心(对角线交点),看守自己的一块牧场.过了一段时间,牧童B和牧童C又分别提出了新的划分方案.牧童B的划分方案如图2:三块矩形的面积相等,牧童的位置在三个小矩形的中心.牧童C的划分方案如图3:把正方形的牧场分成三块矩形,牧童的位置在三个小矩形的中心,并保证在有情况时三个人所需走的最大距离相等.请回答:
(1)牧童B的划分方案中,牧童______(填A、B或C)在有情况时所需走的最大距离较远;
(2)牧童C的划分方案是否符合他们商量的划分原则,为什么?(提示:在计算时可取正方形边长为2)
manfen5.com 满分网
(1)易得A,B的距离相等,设正方形的边长为1,他们到最远处的距离为这个直角三角形斜边的一半,根据勾股定理进行计算可得C的距离最大; (2)分别计算A,C的面积比较它们是否相等作出判断. 【解析】 (1)C; (2)牧童C的划分方案不符合他们商量的划分原则. 理由如下:如图,在正方形DEFG中,四边形HENM、MNFP、DHPG都是矩形,且HN=NP=HG. HE=PF,∠E=∠F=90°, ∴Rt△HEN≌Rt△PFN, ∴EN=NF,S矩形HENM=S矩形MNFP. 取正方形边长为2,设HD=x,则HE=2-x. 在Rt△HEN和Rt△DHG中. 由HN=HG得:EH2+EN2=DH2+DG2. 即:(2-x)2+12=x2+22. 解得:. ∴. ∴S矩形HENM=S矩形MNFP=,S矩形DHPG=. ∴S矩形HENM≠S矩形DHPG. ∴牧童C的划分方案不符合他们商量的划分原则.
复制答案
考点分析:
相关试题推荐
(2010•枣庄)如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.
(1)求证:△ABE≌△DFA;
(2)如果AD=10,AB=6,求sin∠EDF的值.

manfen5.com 满分网 查看答案
(2009•营口)如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.
(1)猜想四边形EFGH的形状,直接回答,不必说明理由;
(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.
manfen5.com 满分网
查看答案
(2009•达州)如图,在△ABC中,AB=2BC,点D、点E分别为AB、AC的中点,连接DE,将△ADE绕点E旋转180°,得到△CFE.试判断四边形BCFD的形状,并说明理由.

manfen5.com 满分网 查看答案
(2009•恩施州)两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF.请判断四边形BNDM的形状,并给出证明.

manfen5.com 满分网 查看答案
(2009•嘉兴)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.
(1)求证:△ABE∽△ADF;
(2)若AG=AH,求证:四边形ABCD是菱形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.