满分5 > 初中数学试题 >

(2009•营口)如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD...

(2009•营口)如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.
(1)猜想四边形EFGH的形状,直接回答,不必说明理由;
(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.
manfen5.com 满分网
(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形; (2)成立,可以根据四边都相等的四边形是菱形判定; (3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形. 【解析】 (1)四边形EFGH是菱形.(2分) (2)成立.(3分) 理由:连接AD,BC.(4分) ∵∠APC=∠BPD, ∴∠APC+∠CPD=∠BPD+∠CPD. 即∠APD=∠CPB. 又∵PA=PC,PD=PB, ∴△APD≌△CPB(SAS) ∴AD=CB.(6分) ∵E、F、G、H分别是AC、AB、BD、CD的中点, ∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线. ∴EF=BC,FG=AD,GH=BC,EH=AD. ∴EF=FG=GH=EH. ∴四边形EFGH是菱形.(7分) (3)补全图形,如答图.(8分) 判断四边形EFGH是正方形.(9分) 理由:连接AD,BC. ∵(2)中已证△APD≌△CPB. ∴∠PAD=∠PCB. ∵∠APC=90°, ∴∠PAD+∠1=90°. 又∵∠1=∠2. ∴∠PCB+∠2=90°. ∴∠3=90°.(11分) ∵(2)中已证GH,EH分别是△BCD,△ACD的中位线, ∴GH∥BC,EH∥AD. ∴∠EHG=90°. 又∵(2)中已证四边形EFGH是菱形, ∴菱形EFGH是正方形.(12分)
复制答案
考点分析:
相关试题推荐
(2009•达州)如图,在△ABC中,AB=2BC,点D、点E分别为AB、AC的中点,连接DE,将△ADE绕点E旋转180°,得到△CFE.试判断四边形BCFD的形状,并说明理由.

manfen5.com 满分网 查看答案
(2009•恩施州)两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF.请判断四边形BNDM的形状,并给出证明.

manfen5.com 满分网 查看答案
(2009•嘉兴)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.
(1)求证:△ABE∽△ADF;
(2)若AG=AH,求证:四边形ABCD是菱形.

manfen5.com 满分网 查看答案
(2009•青岛)已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG;
(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.

manfen5.com 满分网 查看答案
(2009•太原)如图,A是∠MON边OM上一点,AE∥ON.
(1)在图中作∠MON的角平分线OB,交AE于点B;(要求:尺规作图,保留作图痕迹,不写作法和证明)
(2)在(1)中,过点A画OB的垂线,垂足为点D,交ON于点C,连接CB,将图形补充完整,并证明四边形OABC是菱形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.