满分5 > 初中数学试题 >

(2009•龙岩)在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终...

(2009•龙岩)在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.
manfen5.com 满分网
(1)如图1,当点M在AB边上时,连接BN:
①求证:△ABN≌△ADN;
②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.
(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.
(1)①三角形ABN和ADN中,不难得出AB=AD,∠DAC=∠CAB,AN是公共边,根据SAS即可判定两三角形全等. ②通过构建直角三角形来求解.作MH⊥DA交DA的延长线于点H.由(1)可得∠MDA=∠ABN,那么M到AD的距离和∠α就转化到直角三角形MDH和MAH中,然后根据已知条件进行求解即可. (2)本题要分三种情况即:ND=NA,DN=DA,AN=AD进行讨论. 【解析】 (1)①证明:∵四边形ABCD是菱形, ∴AB=AD,∠1=∠2. 又∵AN=AN, ∴△ABN≌△ADN(SAS). ②作MH⊥DA交DA的延长线于点H. 由AD∥BC,得∠MAH=∠ABC=60°. 在Rt△AMH中,MH=AM•sin60°=4×sin60°=2. ∴点M到AD的距离为2. ∴AH=2. ∴DH=6+2=8. 在Rt△DMH中,tan∠MDH=, 由①知,∠MDH=∠ABN=α, ∴tanα=; (2)∵∠ABC=90°, ∴菱形ABCD是正方形. ∴∠CAD=45°. 下面分三种情形: (Ⅰ)若ND=NA,则∠ADN=∠NAD=45°. 此时,点M恰好与点B重合,得x=6; (Ⅱ)若DN=DA,则∠DNA=∠DAN=45°. 此时,点M恰好与点C重合,得x=12; (Ⅲ)若AN=AD=6,则∠1=∠2. ∵AD∥BC, ∴∠1=∠4,又∠2=∠3, ∴∠3=∠4. ∴CM=CN. ∵AC=6. ∴CM=CN=AC-AN=6-6. 故x=12-CM=12-(6-6)=18-6. 综上所述:当x=6或12或18-6时,△ADN是等腰三角形.
复制答案
考点分析:
相关试题推荐
(2009•齐齐哈尔)在直角边分别为5cm和12cm的直角三角形中作菱形,使菱形的一个内角恰好是三角形的一个角,其余顶点都在三角形的边上,求所作菱形的边长.
查看答案
(2009•肇庆)如图,ABCD是菱形,对角线AC与BD相交于O,∠ACD=30°,BD=6.
(1)求证:△ABD是正三角形;
(2)求AC的长(结果可保留根号).

manfen5.com 满分网 查看答案
(2009•来宾)在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.

manfen5.com 满分网 查看答案
(2009•柳州)如图,四边形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四边形ABCD的周长.

manfen5.com 满分网 查看答案
(2009•宁德)如图:点A、D、B、E在同一直线上,AD=BE,AC=DF,AC∥DF,请从图中找出一个与∠E相等的角,并加以证明.
(不再添加其他的字母与线段)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.