满分5 > 初中数学试题 >

(2009•台州)定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫...

(2009•台州)定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.
manfen5.com 满分网
(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD的准内点.
(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)
(3)判断下列命题的真假,在括号内填“真”或“假”.
①任意凸四边形一定存在准内点.(______
②任意凸四边形一定只有一个准内点.(______
③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.(______
(1)过点P作PG⊥AB,PH⊥BC,PI⊥CD,PJ⊥AD,由角平分线的性质可知PJ=PH,PG=PI; (2)平行四边形对角线的交点,即为平行四边形的准内点;梯形两腰夹角的平分线与梯形中位线的交点,即为梯形的准内点; (3)①当凸四边形为平行四边形时,易知其对角线交点即为其准内点;②当凸四边形不为平行四边形时,可以将四边形的两边延长,构造三角形,其对角线交点即为准内点. 【解析】 (1)如图2,过点P作PG⊥AB,PH⊥BC,PI⊥CD,PJ⊥AD ∵EP平分∠DEC ∴PJ=PH.(3分) 同理PG=PI.(1分) ∴P是四边形ABCD的准内点.(1分) (2) (4分) 平行四边形对角线AC,BD的交点P1就是准内点,如图3(1). 或者取平行四边形两对边中点连线的交点P1就是准内点,如图3(2); 梯形两腰夹角的平分线与梯形中位线的交点P2就是准内点.如图4. (3)真;真;假.
复制答案
考点分析:
相关试题推荐
(2009•长沙)如图,E、F是平行四边形ABCD对角线AC上两点,BE∥DF,求证:AF=CE.

manfen5.com 满分网 查看答案
(2009•陕西)如图,在平行四边形ABCD中,点E是AD的中点,连接CE并延长,交BA的延长线于点F.
求证:FA=AB.

manfen5.com 满分网 查看答案
(2009•娄底)如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.
(1)求证:△ABE≌△ACE;
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.

manfen5.com 满分网 查看答案
(2009•青海)如图,梯形ABCD中,AD∥BC,AB=DC,P为梯形ABCD外一点,PA、PD分别交线段BC于点E、F,且PA=PD.
(1)图中除了△ABE≌△DCF外,请你再找出其余三对全等的三角形(不再添加辅助线);
(2)求证:△ABE≌△DCF.

manfen5.com 满分网 查看答案
(2009•铁岭)△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.
(1)如图(a)所示,当点D在线段BC上时.
①求证:△AEB≌△ADC;
②探究四边形BCGE是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;
(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.