满分5 > 初中数学试题 >

(2010•哈尔滨)如图,在△ABC中,∠ACB=90°,AC=BC=10,在△...

(2010•哈尔滨)如图,在△ABC中,∠ACB=90°,AC=BC=10,在△DCE中,∠DCE=90°,DC=EC=6,点D在线段AC上,点E在线段BC的延长线上.将△DCE绕点C旋转60°得到△D′CE′(点D的对应点为点D′,点E的对应点为点E′),连接AD′、BE′,过点C作CN⊥BE′,垂足为N,直线CN交线段AD′于点M,则MN的长为   
manfen5.com 满分网
将△DCE绕点C旋转60°得到△D′CE′,可分为顺时针和逆时针旋转两个图形;先求顺时针旋转的情形,如图作辅助线,先解Rt△BFC,再解△BE′F求BE′,用“面积法”求CN,证明△ACG≌△BCN,△CD'H≌△CE'N,将有关线段转化,可求CM,从而可求MN. 【解析】 如下图,过点B作E'C的垂线交其延长线于F点,过点D'作CM的垂线交CM于H点,过A点作CM的垂线交其延长线于G点. ∵∠ACD'=60°,∠ACB=∠D'CE'=90°, ∴∠BCE′=360°-∠ACD'-∠ACB-∠D'CE'=120°. ∴∠BCF=180°-∠BCE'=60°, BF=sin∠BCF•BC=×10=, ∴S△BCE'=BF•CE'=. ∵∠ACG+∠BCN=90°,∠BCN+∠CBN=90°, ∴∠ACG=∠CBN 又∵AC=BC, ∴Rt△ACG≌Rt△BCN, ∴AG=CN,CG=BN. 同理△CD′H≌△CE′N,D′H=CN,CH=NE′. ∴M为GH中点,CM=(CG+CH)=(NB+NE′)=BE′. 又∵BF=,∠BCF=60°, ∴CF=5,FE′=CF+CE′=11, ∴BE'===14, ∴CM=BE'=7. 又∵S△BCE'=CN•BE', ∴CN=2S△BCE′÷BE'=, ∴MN=CM+CN=7. 同理,当△CDE逆时针旋转60°时,MN如下图中右边所示,MN=7-.
复制答案
考点分析:
相关试题推荐
(2010•菏泽)如图,在正方形ABCD中,O是CD边上的一点,以O为圆心,OD为半径的半圆恰好与以B为圆心,BC为半径的扇形的弧外切,则∠OBC的正弦值为   
manfen5.com 满分网 查看答案
(2010•泸州)如图,PA与⊙O相切于点A,PC经过⊙O的圆心且与该圆相交于两点B、C,若PA=4,PB=2,则sinP=   
manfen5.com 满分网 查看答案
(2010•荆门)在⊙O中直径为4,弦AB=2manfen5.com 满分网,点C是圆上不同于A、B的点,那么∠ACB度数为    查看答案
(2010•青海)如图,点A、B、C、D是⊙O上四点,∠AOD=60°,BD平分∠ABC,P是BD上一点,PE∥AB交BC于点E,且BE=5,则点P到弦AB的距离为   
manfen5.com 满分网 查看答案
(2010•南通)如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN=   
manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.