满分5 > 初中数学试题 >

(2010•荆州)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别...

(2010•荆州)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=manfen5.com 满分网OA=manfen5.com 满分网,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△A'EF,求△A'EF与五边形OEFBC重叠部分的面积.

manfen5.com 满分网
(1)过B作x轴的垂线,设垂足为M,由已知易求得OA=4,在Rt△ABM中,已知了∠OAB的度数及AB的长,即可求出AM、BM的长,进而可得到BC、CD的长,由此可求得D点的坐标; (2)连接OD,证△ODE∽△AEF,通过得到的比例线段,即可得出y、x的函数关系式; (3)若△AEF是等腰三角形,应分三种情况讨论: ①AF=EF,此时△AEF是等腰Rt△,A′在AB的延长线上,重合部分是四边形EDBF,其面积可由梯形ABDE与△AEF的面积差求得; ②AE=EF,此时△AEF是等腰Rt△,且E是直角顶点,此时重合部分即为△A′EF,由于∠DEF=∠EFA=45°,得DE∥AB,即四边形AEDB是平行四边形,则AE=BD,进而可求得重合部分的面积; ③AF=AE,此时四边形AEA′F是菱形,重合部分是△A′EF;由(2)知:△ODE∽△AEF,那么此时OD=OE=3,由此可求得AE、AF的长,过F作x轴的垂线,即可求出△AEF中AE边上的高,进而可求得△AEF(即△A′EF)的面积. 【解析】 (1)过B作BM⊥x轴于M; Rt△ABM中,AB=3,∠BAM=45°;则AM=BM=; ∴BC=OA-AM=4-=,CD=BC-BD=; ∴D点的坐标是;(2分) (2)连接OD;如图(1),由(1)知:D在∠COA的平分线上,则∠DOE=∠COD=45°; 又在梯形DOAB中,∠BAO=45°,∴OD=AB=3 由三角形外角定理得:∠1=∠DEA-45°,又∠2=∠DEA-45° ∴∠1=∠2,∴△ODE∽△AEF(4分) ∴,即: ∴y与x的解析式为:(6分) (3)当△AEF为等腰三角形时,存在EF=AF或EF=AE或AF=AE共3种情况; ①当EF=AF时,如图(2),∠FAE=∠FEA=∠DEF=45°; ∴△AEF为等腰直角三角形,D在A′E上(A′E⊥OA), B在A′F上(A′F⊥EF) ∴△A′EF与五边形OEFBC重叠的面积为四边形EFBD的面积; ∵ ∴ ∴ ∴; (也可用S阴影=S△A'EF-S△A'BD)(8分) ②当EF=AE时,如图(3),此时△A′EF与五边形OEFBC重叠部分面积为△A′EF面积. ∠DEF=∠EFA=45°,DE∥AB,又DB∥EA ∴四边形DEAB是平行四边形 ∴AE=DB= ∴(10分) ③当AF=AE时,如图(4),四边形AEA′F为菱形且△A′EF在五边形OEFBC内. ∴此时△A′EF与五边形OEFBC重叠部分面积为△A′EF面积. 由(2)知△ODE∽△AEF,则OD=OE=3 ∴AE=AF=OA-OE= 过F作FH⊥AE于H,则 ∴ 综上所述,△A’EF与五边形OEFBC重叠部分的面积为或1或.(12分)
复制答案
考点分析:
相关试题推荐
(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中manfen5.com 满分网点,连接EF.
(1)求证:EF∥BC;
(2)若△ABD的面积是6,求四边形BDFE的面积.
查看答案
(2010•江西)课题:两个重叠的正多形,其中的一个绕某一顶点旋转所形成的有关问题.
实验与论证:
设旋转角∠A1AB1=α(α<∠A1AA2),θ3、θ4、θ5、θ6所表示的角如图所示.
manfen5.com 满分网
(1)用含α的式子表示解的度数:θ3=______,θ4=______,θ5=______
(2)图1-图4中,连接AH时,在不添加其他辅助线的情况下,是否存在与直线AH垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;
归纳与猜想:
设正n边形AA1A2…An-1与正n边形AB1B2…Bn-1重合(其中,A1与B1重合),现将正边形AB1B2…Bn-1绕顶点A逆时针旋转α(0°<α<manfen5.com 满分网°);
(3)设θn与上述“θ3、θ4、…”的意义一样,请直接写出θn的度数;
(4)试猜想在正n边形的情形下,是否存在与直线AH垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.
查看答案
(2010•娄底)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD;
(2)AB=BC+AD.

manfen5.com 满分网 查看答案
(2010•广安)某学校花台上有一块形如图所示的三角形ABC地砖,现已破损.管理员要对此地砖测量后再去市场加工一块形状和大小与此完全相同的地砖来换,今只有尺子和量角器,请你帮他设计一个测量方案,使其加工的地砖能符合要求,并说明理由.

manfen5.com 满分网 查看答案
(2010•北京)已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.
求证:∠ACE=∠DBF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.