满分5 > 初中数学试题 >

(2010•内江)如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE...

(2010•内江)如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.

manfen5.com 满分网
由于条件可知CD=AC,BC=CE,且可求得∠ACE=∠DCB,所以△ACE≌△DCB,即AE=BD,∠CAE=∠CDB;又因为对顶角相∠AFC=∠DFH,所以∠DHF=∠ACD=90°,即AE⊥BD. 【解析】 猜测AE=BD,AE⊥BD; 理由如下: ∵∠ACD=∠BCE=90°, ∴∠ACD+∠DCE=∠BCE+∠DCE, 即∠ACE=∠DCB, 又∵△ACD和△BCE都是等腰直角三角形, ∴AC=CD,CE=CB,(4分) ∵在△ACE与△DCB中, ∴△ACE≌△DCB(SAS), ∴AE=BD,(6分)∠CAE=∠CDB; ∵∠AFC=∠DFH,∠FAC+∠AFC=90°, ∴∠DHF=∠ACD=90°, ∴AE⊥BD. 故线段AE和BD的数量相等,位置是垂直关系.
复制答案
考点分析:
相关试题推荐
(2010•南宁)如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.
(1)图中还有几对全等三角形,请你一一列举;
(2)求证:CF=EF.

manfen5.com 满分网 查看答案
(2010•日照)如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)证明:∠BAE=∠FEC;
(2)证明:△AGE≌△ECF;
(3)求△AEF的面积.

manfen5.com 满分网 查看答案
(2010•深圳)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.
(1)求证:△AOC≌△BOD;
(2)若AD=1,BD=2,求CD的长.

manfen5.com 满分网 查看答案
(2010•苏州)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.
(1)求证:△ACD≌△BCE;
(2)若∠D=50°,求∠B的度数.

manfen5.com 满分网 查看答案
(2010•无锡)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=______时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.