满分5 > 初中数学试题 >

(2010•南宁)如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90...

(2010•南宁)如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.
(1)图中还有几对全等三角形,请你一一列举;
(2)求证:CF=EF.

manfen5.com 满分网
(1)根据Rt△ABC≌Rt△ADE,得出AC=AE,BC=DE,AB=AD,∠ACB=∠AED,∠BAC=∠DAE,从而推出∠CAD=∠EAB,△ACD≌△AEB,△CDF≌△EBF, (2)由△CDF≌△EBF,得到CF=EF. (1)【解析】 △ADC≌△ABE,△CDF≌△EBF; (2)证法一:连接CE, ∵Rt△ABC≌Rt△ADE, ∴AC=AE. ∴∠ACE=∠AEC(等边对等角). 又∵Rt△ABC≌Rt△ADE, ∴∠ACB=∠AED. ∴∠ACE-∠ACB=∠AEC-∠AED. 即∠BCE=∠DEC. ∴CF=EF. 证法二:∵Rt△ABC≌Rt△ADE, ∴AC=AE,AD=AB,∠CAB=∠EAD, ∴∠CAB-∠DAB=∠EAD-∠DAB. 即∠CAD=∠EAB. ∴△CAD≌△EAB, ∴CD=EB,∠ADC=∠ABE. 又∵∠ADE=∠ABC, ∴∠CDF=∠EBF. 又∵∠DFC=∠BFE, ∴△CDF≌△EBF(AAS). ∴CF=EF. 证法三:连接AF, ∵Rt△ABC≌Rt△ADE, ∴AB=AD. 又∵AF=AF, ∴Rt△ABF≌Rt△ADF(HL). ∴BF=DF. 又∵BC=DE, ∴BC-BF=DE-DF. 即CF=EF.
复制答案
考点分析:
相关试题推荐
(2010•日照)如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)证明:∠BAE=∠FEC;
(2)证明:△AGE≌△ECF;
(3)求△AEF的面积.

manfen5.com 满分网 查看答案
(2010•深圳)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.
(1)求证:△AOC≌△BOD;
(2)若AD=1,BD=2,求CD的长.

manfen5.com 满分网 查看答案
(2010•苏州)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.
(1)求证:△ACD≌△BCE;
(2)若∠D=50°,求∠B的度数.

manfen5.com 满分网 查看答案
(2010•无锡)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=______时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
manfen5.com 满分网
查看答案
(2010•梧州)如图,AB是∠DAC的平分线,且AD=AC.
求证:BD=BC.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.