满分5 > 初中数学试题 >

(2010•日照)如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,...

(2010•日照)如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)证明:∠BAE=∠FEC;
(2)证明:△AGE≌△ECF;
(3)求△AEF的面积.

manfen5.com 满分网
(1)由于∠AEF是直角,则∠BAE和∠FEC同为∠AEB的余角,由此得证; (2)根据正方形的性质,易证得AG=EC,∠AGE=∠ECF=135°;再加上(1)得出的相等角,可由ASA判定两个三角形全等; (3)在Rt△ABE中,根据勾股定理易求得AE2;由(2)的全等三角形知:AE=EF,即△AEF是等腰Rt△,因此其面积为AE2的一半,由此得解. (1)证明:∵∠AEF=90°, ∴∠FEC+∠AEB=90°;(1分) 在Rt△ABE中,∠AEB+∠BAE=90°, ∴∠BAE=∠FEC;(3分) (2)证明:∵G,E分别是正方形ABCD的边AB,BC的中点, ∴AG=GB=BE=EC,且∠AGE=180°-45°=135°; 又∵CF是∠DCH的平分线, ∠ECF=90°+45°=135°;(4分) 在△AGE和△ECF中,; ∴△AGE≌△ECF;(6分) (3)【解析】 由△AGE≌△ECF,得AE=EF; 又∵∠AEF=90°, ∴△AEF是等腰直角三角形;(7分) ∵AB=a,E为BC中点, ∴BE=BC=AB=a, 根据勾股定理得:AE==a, ∴S△AEF=a2.(9分)
复制答案
考点分析:
相关试题推荐
(2010•深圳)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.
(1)求证:△AOC≌△BOD;
(2)若AD=1,BD=2,求CD的长.

manfen5.com 满分网 查看答案
(2010•苏州)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.
(1)求证:△ACD≌△BCE;
(2)若∠D=50°,求∠B的度数.

manfen5.com 满分网 查看答案
(2010•无锡)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=______时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
manfen5.com 满分网
查看答案
(2010•梧州)如图,AB是∠DAC的平分线,且AD=AC.
求证:BD=BC.

manfen5.com 满分网 查看答案
(2010•武汉)如图.点B,F,C,E在同一条直线上,点A,D在直线BE的两侧,AB∥DE,AC∥DF,BF=CE.
求证:AC=DF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.