满分5 > 初中数学试题 >

(2010•深圳)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠C...

(2010•深圳)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.
(1)求证:△AOC≌△BOD;
(2)若AD=1,BD=2,求CD的长.

manfen5.com 满分网
(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD; (2)由(1)可知△AOC≌△BOD,所以AC=BD=2,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,则CD=. (1)证明:∵∠DOB=90°-∠AOD,∠AOC=90°-∠AOD, ∴∠DOB=∠AOC, 又∵OC=OD,OA=OB, 在△AOC和△BOD中, ∴△AOC≌△BOD(SAS); (2)【解析】 ∵△AOC≌△BOD, ∴AC=BD=2,∠CAO=∠DBO=45°, ∴∠CAB=∠CAO+∠BAO=90°, ∴CD===.
复制答案
考点分析:
相关试题推荐
(2010•苏州)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.
(1)求证:△ACD≌△BCE;
(2)若∠D=50°,求∠B的度数.

manfen5.com 满分网 查看答案
(2010•无锡)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=______时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
manfen5.com 满分网
查看答案
(2010•梧州)如图,AB是∠DAC的平分线,且AD=AC.
求证:BD=BC.

manfen5.com 满分网 查看答案
(2010•武汉)如图.点B,F,C,E在同一条直线上,点A,D在直线BE的两侧,AB∥DE,AC∥DF,BF=CE.
求证:AC=DF.

manfen5.com 满分网 查看答案
(2010•漳州)如图,AD∥BC,∠A=90°,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F,求证:AB=FC.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.