满分5 > 初中数学试题 >

(2010•郴州)如图(1),抛物线y=x2+x-4与y轴交于点A,E(0,b)...

(2010•郴州)如图(1),抛物线y=x2+x-4与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线y=x+b与抛物线交于点B、C.
(1)求点A的坐标;
(2)当b=0时(如图(2)),△ABE与△ACE的面积大小关系如何?当b>-4时,上述关系还成立吗,为什么?
(3)是否存在这样的b,使得△BOC是以BC为斜边的直角三角形?若存在,求出b;若不存在,说明理由.
manfen5.com 满分网
(1)知道抛物线的解析式,要求与y轴的交点,令x=0就能求得. (2)当b=0时,直线为y=x,联立两方程式解得交点坐标,由三角形面积公式分别求出两三角形的面积.当b>-4时,仍然联立方程解坐标,作BF⊥y轴,CG⊥y轴,垂足分别为F、G,解得BF和CG的值,再由面积公式求面积值. (3)由BF=CG,∠BEF=∠CEG,∠BFE=∠CGE=90°,可证△BEF≌△CEG,可知BE=CE,即E为BC的中点,当OE=CE时,△OBC为直角三角形,解三角形得到答案. 【解析】 (1)将x=0,代入抛物线解析式,得点A的坐标为(0,-4), (2)当b=0时,直线为y=x,由, 解得,. ∴B、C的坐标分别为(-2,-2),(2,2),, ∴S△ABE=S△ACE. 当b>-4时,仍有S△ABE=S△ACE成立.理由如下 由, 解得,. 故B、C的坐标分别为(-,-+b),(,+b), 作BF⊥y轴,CG⊥y轴,垂足分别为F、G,则, 而△ABE和△ACE是同底的两个三角形, ∴S△ABE=S△ACE. (3)存在这样的b, ∵BF=CG,∠BEF=∠CEG,∠BFE=∠CGE=90°, ∴△BEF≌△CEG, ∴BE=CE, 即E为BC的中点, ∴当OE=CE时,OE=BC,此时△OBC为直角三角形. ∵, ∴,而OE=|b|, ∴, 解得b1=4,b2=-2, ∴当b=4或-2时,△OBC为直角三角形.
复制答案
考点分析:
相关试题推荐
(2010•抚顺)如图所示,平面直角坐标系中,抛物线y=ax2+bx+c经过A(0,4)、B(-2,0)、C(6,0).过点A作AD∥x轴交抛物线于点D,过点D作DE⊥x轴,垂足为点E.点M是四边形OADE的对角线的交点,点F在y轴负半轴上,且F(0,-2).
(1)求抛物线的解析式,并直接写出四边形OADE的形状;
(2)当点P、Q从C、F两点同时出发,均以每秒1个长度单位的速度沿CB、FA方向运动,点P运动到O时P、Q两点同时停止运动.设运动的时间为t秒,在运动过程中,以P、Q、O、M四点为顶点的四边形的面积为S,求出S与t之间的函数关系式,并写出自变量的取值范围;
(3)在抛物线上是否存在点N,使以B、C、F、N为顶点的四边形是梯形?若存在,直接写出点N的坐标;不存在,说明理由.

manfen5.com 满分网 查看答案
(2010•河源)如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的圆交x轴于E,D两点(D点在E点右方).
(1)求点E,D的坐标;
(2)求过B,C,D三点的抛物线的函数关系式;
(3)过B,C,D三点的抛物线上是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

manfen5.com 满分网 查看答案
(2010•随州)已知抛物线y=ax2+bx+c(a≠0)顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线manfen5.com 满分网作垂线,垂足为M,连FM(如图).
(1)求字母a,b,c的值;
(2)在直线x=1上有一点manfen5.com 满分网,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;
(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立?若存在请求出t值,若不存在请说明理由.

manfen5.com 满分网 查看答案
(2010•江津区)如图,抛物线y=ax2+bx+1与x轴交于两点A(-1,0),B(1,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)过点B作BD∥CA抛物线交于点D,求四边形ACBD的面积;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2010•攀枝花)如图所示,已知直线y=manfen5.com 满分网x与抛物线y=ax2+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交点为C.
(1)求这个抛物线的解析式;
(2)在抛物线上存在点M,是△MAB是以AB为底边的等腰三角形,求点M的坐标;
(3)在抛物线上是否存在点P使得△PAC的面积是△ABC面积的manfen5.com 满分网?若存在,试求出此时点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.