满分5 > 初中数学试题 >

(2010•河源)如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1...

(2010•河源)如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的圆交x轴于E,D两点(D点在E点右方).
(1)求点E,D的坐标;
(2)求过B,C,D三点的抛物线的函数关系式;
(3)过B,C,D三点的抛物线上是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

manfen5.com 满分网
(1)设以BC为直径的圆的圆心为M,由于⊙M过点D,由圆周角定理可得∠BDC=90°;即可证得△ABD∽△ODC,可用OD表示出DA,根据相似三角形得到的比例线段,即可求得OD的长,由此可得到点D、E的坐标; (2)用待定系数法求解即可求出该抛物线的解析式; (3)首先求出直线CD的解析式;由于CD⊥BD,且点C在抛物线的图象上,因此C点就是符合条件的Q点;同理可先求出过B点且平行于CD的直线l的解析式,直线l与抛物线的交点(B点除外)也应该符合Q点的要求. 【解析】 (1)取BC的中点M,过M作MN⊥x轴于N;则M点即为以BC为直径的圆的圆心; ∵点D是⊙M上的点,且BC是直径, ∴∠BDC=90°; ∴∠OCD=∠BDA=90°-∠ODC; 又∵∠COD=∠OAB, ∴△OCD∽△ADB; ∴; ∵OC=3,AB=1,OA=OD+DA=4, ∴3×1=OD×(4-OD), 解得AD=1,OD=3; ∵点D在点E右边, ∴OD=3,OE=1; 即D(3,0),E(1,0); (2)设抛物线的解析式为y=ax2+bx+c,(a≠0),依题意, 有:, 解得; ∴y=x2-x+3; (3)假设存在这样的Q点; ①△BDQ以D为直角顶点; 由于CD⊥BD,且C点在抛物线的图象上, 所以C点符合Q点的要求; 此时Q(0,3); ②△BDQ以B为直角顶点; 易知直线CD的解析式为:y=-x+3; 作过B的直线l,且l∥CD; 设l的解析式为y=-x+h,由于l经过点B(4,1), 则有:-4+h=1,h=5; ∴直线l的解析式为y=-x+5; 联立抛物线的解析式有: , 解得,; ∴Q(-1,6); 综上所述,存在符合条件的Q点,且Q点坐标为(0,3)或(-1,6).
复制答案
考点分析:
相关试题推荐
(2010•随州)已知抛物线y=ax2+bx+c(a≠0)顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线manfen5.com 满分网作垂线,垂足为M,连FM(如图).
(1)求字母a,b,c的值;
(2)在直线x=1上有一点manfen5.com 满分网,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;
(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立?若存在请求出t值,若不存在请说明理由.

manfen5.com 满分网 查看答案
(2010•江津区)如图,抛物线y=ax2+bx+1与x轴交于两点A(-1,0),B(1,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)过点B作BD∥CA抛物线交于点D,求四边形ACBD的面积;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2010•攀枝花)如图所示,已知直线y=manfen5.com 满分网x与抛物线y=ax2+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交点为C.
(1)求这个抛物线的解析式;
(2)在抛物线上存在点M,是△MAB是以AB为底边的等腰三角形,求点M的坐标;
(3)在抛物线上是否存在点P使得△PAC的面积是△ABC面积的manfen5.com 满分网?若存在,试求出此时点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2010•无锡)如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=manfen5.com 满分网.设直线AC与直线x=4交于点E.
(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;
(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值.

manfen5.com 满分网 查看答案
(2011•黔南州)如图,在平面直角坐标系中,点A的坐标为(1,manfen5.com 满分网),△AOB的面积是manfen5.com 满分网
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOD面积比为2:3?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.