满分5 > 初中数学试题 >

(2010•常州)如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB...

(2010•常州)如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.
(1)当PQ∥AD时,求x的值;
(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;
(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.

manfen5.com 满分网
(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ求x即可; (2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8-x)2+y2=(6-y)2+x2然后根据函数的性质来求x的取值范围; (3)由图形的等量关系列出方程,再根据函数的性质来求最值. 【解析】 (1)当PQ∥AD时,则 ∠A=∠APQ=90°,∠D=∠DQP=90°, 又∵AB∥CD, ∴四边形APQD是矩形, ∴AP=QD, ∵AP=CQ, AP=CD=, ∴x=4. (2)如图,连接EP、EQ,则EP=EQ,设BE=y. ∴(8-x)2+y2=(6-y)2+x2, ∴y=. ∵0≤y≤6, ∴0≤≤6, ∴≤x≤. (3)S△BPE=•BE•BP=••(8-x)=, S△ECQ==•(6-)•x=, ∵AP=CQ, ∴SBPQC=, ∴S=SBPQC-S△BPE-S△ECQ=24--, 整理得:S==(x-4)2+12(), ∴当x=4时,S有最小值12, 当x=或x=时,S有最大值. ∴12≤S≤.
复制答案
考点分析:
相关试题推荐
(2010•大连)如图,在△ABC中,AB=AC=5,BC=6,动点P从点A出发沿AB向点B移动,(点P与点A、B不重合),作PD∥BC交AC于点D,在DC上取点E,以DE、DP为邻边作平行四边形PFED,使点F到PD的距离manfen5.com 满分网,连接BF,设AP=x.
(1)△ABC的面积等于______
(2)设△PBF的面积为y,求y与x的函数关系,并求y的最大值.

manfen5.com 满分网 查看答案
(2010•南通)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.
(1)求y关于x的函数关系式;
(2)若m=8,求x为何值时,y的值最大,最大值是多少?
(3)若y=manfen5.com 满分网,要使△DEF为等腰三角形,m的值应为多少?

manfen5.com 满分网 查看答案
(2010•钦州)如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为______;用含t的式子表示点P的坐标为______
(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的manfen5.com 满分网?若存在,求出点T的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2010•青岛)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
manfen5.com 满分网
查看答案
(2010•台州)如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.
(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;
(3)当x为何值时,△HDE为等腰三角形?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.