(2010•宜昌)如图所示,P是△ABC边AC上的动点,以P为顶点作矩形PDEF,顶点D,E在边BC上,顶点F在边AB上;△ABC的底边BC及BC上的高的长分别为a,h,且是关于x的一元二次方程mx
2+nx+k=0的两个实数根,设过D,E,F三点的⊙O的面积为S
⊙O,矩形PDEF的面积为S
矩形PDEF.
(1)求证:以a+h为边长的正方形面积与以a、h为边长的矩形面积之比不小于4;
(2)求

的最小值;
(3)当

的值最小时,过点A作BC的平行线交直线BP与Q,这时线段AQ的长与m,n,k的取值是否有关?请说明理由.
考点分析:
相关试题推荐
(2010•株洲)如图,直角△ABC中,∠C=90°,

,

,点P为边BC上一动点,PD∥AB,PD交AC于点D,连接AP.
(1)求AC、BC的长;
(2)设PC的长为x,△ADP的面积为y.当x为何值时,y最大,并求出最大值.
查看答案

(2010•牡丹江)如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足

.
(1)求B、C两点的坐标;
(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BB′的解析式;
(3)在直线BB′上是否存在点P,使△ADP为直角三角形?若存在,请直接写出P点坐标;若不存在,请说明理由.
查看答案
(2010•深圳)如图1所示,以点M(-1,O)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=-

x-

与⊙M相切于点H,交x轴于点E,交y轴于点F.
(1)请直接写出OE,⊙M的半径r,CH的长;
(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;
(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.

查看答案
(2010•莆田)如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=

.
(1)求直线AC的解析式;
(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)抛物线y=-x
2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴的正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处.
查看答案
(2010•江津区)在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x
2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.
查看答案