满分5 > 初中数学试题 >

(2010•深圳)如图1所示,以点M(-1,O)为圆心的圆与y轴,x轴分别交于点...

(2010•深圳)如图1所示,以点M(-1,O)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=-manfen5.com 满分网x-manfen5.com 满分网与⊙M相切于点H,交x轴于点E,交y轴于点F.
(1)请直接写出OE,⊙M的半径r,CH的长;
(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;
(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.
manfen5.com 满分网manfen5.com 满分网
(1)在直线y=-x-中,令y=0,可求得E的坐标,即可得到OE的长为5;连接MH,根据△EMH与△EFO相似即可求得半径为2;再由EC=MC=2,∠EHM=90°,可知CH是RT△EHM斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半即可得出CH的长; (2)连接DQ、CQ.根据相似三角形的判定得到△CHP∽△QDP,从而求得DQ的长,在直角三角形CDQ中,即可求得∠D的余弦值,即为cos∠QHC的值; (3)连接AK,AM,延长AM,与圆交于点G,连接TG,由圆周角定理可知,∠GTA=90°,∠3=∠4,故∠AKC=∠MAN,再由△AMK∽△NMA即可得出结论. 【解析】 (1)∵直线y=-x-中,令y=0,则x=-5,即OE=5; 令x=0,则y=-,故F点坐标为(0,-), ∴EF==, ∵M(-1,0), ∴EM=4, ∵∠E=∠E,∠AOE=∠EHM, ∴△EMH∽△EFO, ∴=,即=, ∴r=2; ∵CH是RT△EHM斜边上的中线, ∴CH=EM=2. (2)连接DQ、CQ. ∵∠CHP=∠D,∠CPH=∠QPD, ∴△CHP∽△QDP. ∴CH:DQ=HP:PD=2:3, ∴DQ=3. ∴cos∠QHC=cos∠D=. (3)如图3,连接AK,AM,延长AM,与圆交于点G,连接TG,则∠GTA=90°, ∴∠MAN+∠4=90°, ∵∠3=∠4 ∴∠MAN+∠3=90° 由于∠BKO+∠3=90°,故∠BKC=∠MAN; 而∠BKC=∠AKC, ∴∠AKC=∠2, 在△AMK和△NMA中,∠AKC=∠MAN;∠AMK=∠NMA, 故△MAK∽△MNA, =; 即:MN•MK=AM2=4, 故存在常数a,始终满足MN•MK=a, 常数a=4.
复制答案
考点分析:
相关试题推荐
(2010•莆田)如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=manfen5.com 满分网
(1)求直线AC的解析式;
(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)抛物线y=-x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴的正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处.

manfen5.com 满分网 查看答案
(2010•江津区)在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.
查看答案
(2010•宜宾)(1)计算:(manfen5.com 满分网+1)+(-manfen5.com 满分网-1-|manfen5.com 满分网-2|-2sin45°;
(2)先化简,再求值:(x-manfen5.com 满分网)÷manfen5.com 满分网,其中x=manfen5.com 满分网+1;
(3)如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F.求证:BF=CE.

manfen5.com 满分网 查看答案
(2010•湘潭)有四张不透明的卡片,正面写有不同命题(见下图),背面完全相同.将这四张卡片背面朝上洗匀后,随机抽取一张,得到正面上命题是真命题的概率为   
manfen5.com 满分网 查看答案
(2010•芜湖)芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图1,他在边长为1的正方形ABCD内作等边三角形BCE,并与正方形的对角线交于F、G点,制成如图2的图标.则图标中阴影部分图形AFEGD的面积=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.