满分5 > 初中数学试题 >

(2010•鞍山)如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动...

(2010•鞍山)如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B⇒A,B⇒C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.
(1)若a=4厘米,t=1秒,则PM=______厘米;
(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.

manfen5.com 满分网
(1)容易知道△ANB∽△APM,利用相似三角形的对应边成比例就可以求出PM; (2)若PNB∽△PAD,则,而,∴这样就可以求出t,也可以求出相似比; (3)首先利用△AMP∽△ABN把QM,PM用t表示,然后就可以用t表示梯形PMBN与梯形PQDA的面积,根据已知可以得到关于t的方程,最后就可以根据t与a的关系式就可以讨论t的取值范围了; (4)根据(3)已经得到t的取值范围,再根据梯形PQCN的面积与梯形PMBN的面积相等得到关于t的方程,求出t,再求出a,这样就可以判断a的值是否存在. 【解析】 (1)当t=1时,MB=1,NB=1,AM=4-1=3, ∵PM∥BN ∴△ANB∽△APM, ∴, ∴. (2)当t=2时,使△PNB∽△PAD, ∴, ∵, ∴这样就可以求出t, 相似比为2:3. (3)∵PM⊥AB,CB⊥AB,∠AMP=∠ABC,△AMP∽△ABN, ∴即,∵, ∵PQ=3-, 当梯形PMBN与梯形PQDA的面积相等, 即=, 化简得, ∵t≤3, ∴,则a≤6, ∴3<a≤6. (4)∵3<a≤6时,梯形PMBN与梯形PQDA的面积相等, ∴梯形PQCN的面积与梯形PMBN的面积相等即可,则CN=PM, ∴(a-t)=3-t, 两边同时乘以a,得at-t2=3a-at, 整理,得t2-2at+3a=0, 把代入,整理得9a3-108a=0, ∵a≠0,∴9a2-108=0, ∴a=±2, 所以a=2. 所以,存在a, 当a=2时梯形PMBN与梯形PQDA的面积、梯形PQCN的面积相等.
复制答案
考点分析:
相关试题推荐
(2010•鞍山)已知一次函数y1=ax+b的图象与反比例函数y2=manfen5.com 满分网的图象相交于A、B两点,坐标分别为(-2,4)、(4,-2).
(1)求两个函数的解析式;
(2)结合图象写出y1<y2时,x的取值范围;
(3)求△AOB的面积;
(4)是否存在一点P,使以点A﹑B﹑O﹑P为顶点的四边形为菱形?若存在,求出顶点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2010•鞍山)小华将勤工俭学挣得的100元钱按一年定期存入银行,到期后取出50元来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入银行,若存款的年利率又下调到原来的一半,这样到期后可得本息和63元,求第一次存款的年利率(不计利息税).
查看答案
(2010•鞍山)①如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD,BD,BC,AC的中点.
(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论;
②如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC,交CE的延长线与点F.求证:AB垂直平分DF.

manfen5.com 满分网 查看答案
(2010•鞍山)端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子.
(1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率;
(2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由.

manfen5.com 满分网 查看答案
(2010•鞍山)旗杆、树和竹竿都垂直于地面且一字排列,在路灯下树和竹竿的影子的方位和长短如图所示.请根据图上的信息标出灯泡的位置(用点P表示),再作出旗杆的影子(用线段字母表示).(不写作法,保留作图痕迹)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.