满分5 > 初中数学试题 >

(2006•沈阳)如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,...

(2006•沈阳)如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).
(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立”)
(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.
manfen5.com 满分网
(1)根据正方形的性质证明△DEC≌△AFD即可知道结论成立. (2)由已知得四边形ABCD为正方形,证明Rt△ADF≌Rt△ECD,然后推出∠ADE+∠DAF=90°;进而得出AF⊥DE; (3)首先根据题意证明四边形MNPQ是菱形,然后又因为AF⊥DE,得出四边形MNPQ为正方形. 【解析】 (1)∵DF=CE,AD=DC,且∠ADF=∠DCE, ∴△DEC≌△AFD; ∴结论①、②成立(1分) (2)结论①、②仍然成立.理由为: ∵四边形ABCD为正方形, ∴AD=DC=CB且∠ADC=∠DCB=90°, 在Rt△ADF和Rt△ECD中 , ∴Rt△ADF≌Rt△ECD(SAS),(3分) ∴AF=DE, ∴∠DAF=∠CDE, ∵∠ADE+∠CDE=90°, ∴∠ADE+∠DAF=90°, ∴∠AGD=90°, ∴AF⊥DE;(5分) (3)结论:四边形MNPQ是正方形(6分) 证明:∵AM=ME,AQ=QD, ∴MQ∥DE且MQ=DE, 同理可证:PN∥DE,PN=DE;MN∥AF,MN=AF;PQ∥AF,PQ=AF; ∵AF=DE, ∴MN=NP=PQ=QM, ∴四边形MNPQ是菱形,(8分) 又∵AF⊥DE, ∴∠MQP=90°, ∴四边形MNPQ是正方形.(10分)
复制答案
考点分析:
相关试题推荐
(2005•芜湖)已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为   
manfen5.com 满分网 查看答案
(2005•芜湖)在珠穆朗玛峰周围2千米的范围内,还有较著名的洛子峰(海拔8516米)、卓穷峰(海拔7589米),马卡鲁峰(海拔8463米),章子峰(海拔7543米),努子峰(海拔7855米),和普莫里峰(海拔7145米)六座山峰,则这六座山峰海拔高度的极差为    米. 查看答案
(2013•济宁三模)如图,在矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF=   
manfen5.com 满分网 查看答案
(2010•大庆)如图,已知∠AOB=30°,M为OB边上一点,以M为圆心、2cm为半径作M.若⊙M在OB边上运动,则当OM=    cm时,⊙M与OA相切.
manfen5.com 满分网 查看答案
(2009•崇左)一元二次方程x2+mx+3=0的一个根为-1,则另一个根为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.