满分5 > 初中数学试题 >

(2012•绍兴三模)如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从...

(2012•绍兴三模)如图,二次函数manfen5.com 满分网与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动.设PQ交直线AC于点G.
(1)求直线AC的解析式;
(2)设△PQC的面积为S,求S关于t的函数解析式;
(3)在y轴上找一点M,使△MAC和△MBC都是等腰三角形.直接写出所有满足条件的M点的坐标;
(4)过点P作PE⊥AC,垂足为E,当P点运动时,线段EG的长度是否发生改变,请说明理由.

manfen5.com 满分网
(1)直线AC经过点A,C,根据抛物线的解析式面积可求得两点坐标,利用待定系数法就可求得AC的解析式; (2)根据三角形面积公式即可写出解析式; (3)可以分腰和底边进行讨论,即可确定点的坐标; (4)过G作GH⊥y轴,根据三角形相似,相似三角形的对应边的比相等即可求解. 【解析】 (1)y=-x2+2, x=0时,y=2, y=0时,x=±2, ∴A(-2,0),B(2,0),C(0,2), 设直线AC的解析式是y=kx+b, 代入得:, 解得:k=1,b=2, 即直线AC的解析式是y=x+2; (2)当0<t<2时, OP=(2-t),QC=t, ∴△PQC的面积为:S=(2-t)t=-t2+t, 当2<t≤4时, OP=(t-2),QC=t, ∴△PQC的面积为:S=(t-2)t=t2-t, ∴; (3)当AC=CM=BC时,M的坐标是:(0,),(0,-2); 当AM=BM=CM时,M的坐标是:(0,0),(0,); 一共四个点,(0,),(0,0),(0,),(0,-2); (4)当0<t<2时,过G作GH⊥y轴,垂足为H. 由AP=t,可得AE=. ∵GH∥OP ∴即=,解得GH=, 所以GC=GH=. 于是,GE=AC-AE-GC==. 即GE的长度不变. 当2<t≤4时,过G作GH⊥y轴,垂足为H. 由AP=t,可得AE=. 由即=, ∴GH(2+t)=t(t-2)-(t-2)GH, ∴GH(2+t)+(t-2)GH=t(t-2), ∴2tGH=t(t-2), 解得GH=, 所以GC=GH=. 于是,GE=AC-AE+GC=2-t+=, 即GE的长度不变. 综合得:当P点运动时,线段EG的长度不发生改变,为定值.
复制答案
考点分析:
相关试题推荐
“低碳生活”作为一种健康、环保、安全的生活方式,受到越来越多人的关注.某公司生产的健身自行车在市场上受到普遍欢迎,在国内市场和国外市场畅销,生产的产品可以全部售出.该公司的年生产能力为10万辆,在国内市场每台的利润y1(元)与销量x(万台)的关系如图所示;在国外市场每台的利润y2(元)与销量x(万台)的关系为
y2=manfen5.com 满分网
(1)求国内市场的销售总利润z(万元)关于销售量x(万台)的函数关系式,并指出自变量的取值范围.
(2)求该公司每年的总利润w(万元)关于国内市场的销量x(万台)的函数关系式,并帮助该公司确定国内、国外市场的销量各为多少万台时,公司的年利润最大?

manfen5.com 满分网 查看答案
某商场为了迎接“六一”儿童节的到来,制造了一个超大的“不倒翁”.小灵对“不倒翁”很感兴趣,原来“不倒翁”的底部是由一个空心的半球做成的,并在底部的中心(即图中的C处)固定一个重物,再从正中心立起一根杆子,在杆子上作些装饰,在重力和杠杆的作用下,“不倒翁”就会左摇右晃,又不会完全倒下去.小灵画出剖面图,进行细致研究:圆弧的圆心为点O,过点O的木杆CD长为260cm,OA、OB为圆弧的半径长为90cm(作为木杆的支架),且OA、OB关于CD对称,弧AB的长为30πcm.当木杆CD向右摆动使点B落在地面上(即圆弧与直线l相切于点B)时,木杆的顶端点D到直线l的距离DF是多少cm?
manfen5.com 满分网
查看答案
(2011•苏州模拟)随着国家刺激消费政策的落实,某县拥有家用汽车的数量快速增长,截止2009年底该县家用汽车拥有量为76032辆.己知2007年底该县家用汽车拥有量为52800辆.请解答如下问题:
(1)2007年底至2009年底我市家用汽车拥有量的年平均增长率是多少?
(2)为保护城市环境,县政府要求到2011年底家用汽车拥有量不超过80000辆,据估计从2009年底起,此后每年报废的家用汽车数量是上年底家用汽车拥有量的4%,要达到县政府的要求,每年新增家用汽车数量最多不超过多少辆?(假定每年新增家用汽车数量相同,结果精确到个位)
查看答案
(2011•港闸区模拟)2010年2月中旬,沿海各地再次出现用工荒,甲乙两人是技术熟练的工人,他们参加一次招聘会,听说有三家企业需要他们这类人才,虽然对三家企业的待遇状况不了解,但是他们一定会在这三家企业中的一家工作.三家企业在招聘中有相同的规定:技术熟练的工人只要愿意来,一定招,但是不招在招聘会中放弃过本企业的工人.甲乙两人采用了不同的求职方案:
甲无论如何选位置靠前的第一家企业;而乙则喜欢先观察比较后选择,位置靠前的第一家企业,他总是仔细了解企业的待遇和状况后,选择放弃;如果第二家企业的待遇状况比第一家好,他就选择第二家企业;如果第二家企业不比第一家好,他就只能选择第三家企业.
如果把这三家企业的待遇状况分为好、中、差三个等级,请尝试解决下列问题:
(1)好、中、差三家企业按出现的先后顺序共有几种不同的可能?
(2)你认为甲、乙两人采用的方案,哪一种方案使自己找到待遇状况好的企业的可能性大?请说明理由?
查看答案
(2011•港闸区模拟)如图,四边形ABCD内接于⊙O,CD∥AB,且AB是⊙O的直径,AE⊥CD交CD延长线于点E.
(1)求证:AE是⊙O的切线;
(2)若AE=2,CD=3,求⊙O的直径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.