(2009•无锡一模)(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米.
①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围?
②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.

(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定…比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图.(实线表示乌龟,虚线表示兔子)
考点分析:
相关试题推荐
(2009•无锡一模)某公司有A型产品80件,B型产品120件,分配给下属甲、乙两个商店销售,其中140件给甲店,60件给乙店,且都能卖完.甲店销售A型产品利润每件400元,销售B型产品利润每件340元;乙店销售A型产品利润每件320元,销售B型产品利润每件300元.
(1)若公司要求总利润不低于70280元,求出公司能采用几种不同的分配方案?
(2)为了促销,公司决定仅对甲店A型产品让利销售,每件让利m元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A、B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
查看答案
(2009•无锡一模)如图,以正方形ABCD的边CD为直径作⊙O,以顶点C为圆心、边CB为半径作

,E为BC的延长线上一点,且CD、CE的长恰为方程x
2-2(

+1)x+4

=0的两根,其中CD<CE.连接DE交⊙O于点F.
(1)求DF的长;
(2)求图中阴影部分的面积S.
查看答案
(2009•无锡一模)为切实减轻中小学生过重课业负担,2009年3月5日,无锡市教育局、无锡市人民政府教育督导室联合发文《关于重申和明确减轻中小学生过重课业负担若干规定的通知》.其中,有这样一项规定:学校课程表要上网示.
周六下午,初三(5)班的小刚到小强家玩.休息之余,两人进入校园网,研究起了本校各班的课程表…
现已知初一(1)班周四下午共安排数学、生物、体育这三节课.
(1)在不考虑其他因素的情况下,请你通过画树状图法列出初一(1)班周四下午的课程表有哪几种可能性;
(2)小刚与小强通过研究发现,学校在安排课务时遵循了这样的一个原则--在每天的课表中,语文、数学、英语这三门学科一定是安排在体育课与课外活动课之前.问:在不知情(课务安排原则)的情况下,你给初一(1)班所设计的周四下午的课程表符合学校要求的概率有多大?
(3)在小刚与小强两人得出(2)中的课务安排原则之后,小强告知小刚:初二(2)班周五下午共安排有课外活动、英语、历史这三节课,然后请小刚猜想这三节课的安排顺序,则小刚猜对的概率为______(直接写出答案).
查看答案
(2009•无锡一模)如图,在12×10的正方形网格中,每个小正方形的边长均为1个单位.
(1)请将格点三角形ABC先向右平移4个单位,再向上平移3个单位,得△A
1B
1C
1;
(2)请将△A
1B
1C
1绕点B
1逆时针旋转90°,得△A
2B
2C
2;
(3)图中,点C
2到A
2B
2的距离为______
查看答案
(2012•新疆)如图,在矩形ABCD中,以顶点B为圆心、边BC长为半径作弧,交AD边于点E,连接BE,过C点作CF⊥BE于F.猜想线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.猜想:BF=______.
查看答案