(2011•宁波模拟)如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.
(1)求梯形ABCD的面积S;
(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:
①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;
②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;
③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
考点分析:
相关试题推荐
(2009•西城区一模)已知:反比例函数

和

在平面直角坐标系xOy第一象限中的图象如图所示,点A在

的图象上,AB∥y轴,与

的图象交于点B,AC、BD与x轴平行,分别与

,

的图象交于点C、D.
(1)若点A的横坐标为2,求梯形ACBD的对角线的交点F的坐标;
(2)若点A的横坐标为m,比较△OBC与△ABC的面积的大小,并说明理由;
(3)若△ABC与以A、B、D为顶点的三角形相似,请直接写出点A的坐标.
查看答案
(2012•永安市质检)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本.
(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?
(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的

,但又不少于B种笔记本数量的

,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.
①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;
②请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?
查看答案
已知:如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,CB的延长线交过A、B、D三点的圆于点E.
(1)判断线段AE与CE之间的数量关系,并加以证明;
(2)若过A、B、D三点的圆记为⊙O,过E点作⊙O的切线交AC的延长线于点F,且CD:CF=1:2,求:cosF的值.
查看答案
如图,已知A(-4,0),B(-1,4),将线段AB绕点O,顺时针旋转90°,得到线段A′B′.
(1)求直线BB′的解析式;
(2)抛物线y
1=ax
2-19cx+16c经过A′,B′两点,求抛物线的解析式并画出它的图象;
(3)在(2)的条件下,若直线A′B′的函数解析式为y
2=mx+n,观察图象,当y
1≥y
2时,写出x的取值范围.
查看答案
如图,在一旗杆AB上系一活动旗帜C,在某一时刻,旗杆的影子落在平地BD和一坡度为1:

的斜坡DF上,拉动旗帜使其影子正好落在斜坡顶点D处,若测得旗高BC=4m,影长BD=8m,影长DE=6m,(假设旗杆AB与地面垂直,B、D、G三点共线,AB、BG、DF在同一平面内).
(1)求坡角∠FDG的度数;
(2)求旗杆AB的高度. (结果精确到0.1m)
查看答案