如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OAB为正三角形.△OAB的外接圆交y轴的正半轴于点C.
(1)点B的坐标是______,点C的坐标是______;
(2)过点C的圆的切线交x轴于点D,则图中阴影部分的面积是______;
(3)若OH⊥AB于点H,点P在线段OH上.点Q在y轴的正半轴上,OQ=PH,PQ与OB交于点M.
①当△OPM为等腰三角形时,求点Q的坐标;
②探究线段OM长度的最大值是多少,直接写出结论.
考点分析:
相关试题推荐
如图1,在Rt△ABC中,∠C=90°,BC=8厘米,AC=12厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒是k厘米;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y
1平方厘米,△PCQ的面积为y
2平方厘米.
(1)求y
1与x的函数关系,并在图2中画出y
1的图象;
(2)如图2,y
2的图象是抛物线的一部分,其顶点坐标是(4,12),求k的值和y
2与x的函数关系;
(3)在图2中,设y
1与y
2的图象的交点为M,点G是x轴正半轴上一点(0<OG<6),过G作EF垂直于x轴,分别与y
1、y
2的图象交于点E、F.求△OMF面积的最大值.
①说出线段EF的长在图1中所表示的实际意义;
②求△OMF面积的最大值.
查看答案
(2008•益阳)两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:
(1)如图,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.

(2)如图,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.

(3)如图,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,请你求出sinα的值.
查看答案
一个不透明的布袋内装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4
(1)从布袋中随机地取出一个小球,则小球上所标的数字恰好为4的概率是______;
(2)从布袋中随机地取出一个小球,记录小球上所标的数字为x,不将取出的小球放回布袋,再随机地取出一个小球,记录小球上所标的数字为y,这样就确定点P的一个坐标为(x,y),求点P落在直线y=x+1上的概率;
(3)从布袋中随机地取出一个小球,用小球上所标的数字作为十位上的数字,将取出的小球放回布袋后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,求组成的两位数恰好是3的倍数的概率.
查看答案
甲车由A地出发沿一条公路向B地行驶,4小时到达.如图,折线L
1表示甲车行驶的路程y(千米)与所用时间x(小时)之间的函数图象.根据图象,解答下列问题:
(1)A、B两地的距离是______千米;
(2)求y与x之间的函数关系式;
(3)若乙车在甲车出发0.5小时后也从A地出发,沿同一条公路匀逮行驶至B地.线段L
2表示乙车行驶的路程y(千米)与所用时间x(小时)之间的函数图象.那么①乙车的速度是______千米/小时,②在什么时间段内乙车比甲车离B地更近.
查看答案
(2009•黔南州)“农民也可以报销医疗费了!”这是某市推行新型农村医疗合作的成果.村民只要每人每年交10元钱,就可以加入合作医疗,每年先由自己支付医疗费,年终时可得到按一定比例返回的返回款.这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集到的数据绘制了以下的统计图.
根据以上信息,解答以下问题:
(1)本次调查了多少村民,被调查的村民中,有多少人参加合作医疗得到了返回款;
(2)该乡若有10 000村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9 680人,假设这两年的年增长率相同,求这个年增长率.
查看答案